首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a calcium-sensing protein, calmodulin acts as a transducer of the intracellular calcium signal for a variety of cellular responses. Although calcium is an important regulator of neuronal survival during development of the nervous system and is also implicated in the pathogenesis of neurodegenerative disorders, it is not known if calmodulin mediates these actions of calcium. To determine the role of calmodulin in regulating neuronal survival and death, we overexpressed calmodulin with mutations in all four Ca(2+)-binding sites (CaM(1-4)) or with disabled C-terminal Ca(2+)-binding sites (CaM(3,4)) in cultured neocortical neurons by adenoviral gene transfer. Long-term neuronal survival was decreased in neurons overexpressing CaM(1-4) and CaM(3,4), which could not be rescued by brain-derived neurotrophic factor (BDNF). The basal level of Akt kinase activation was decreased, and the ability of BDNF to activate Akt was completely abolished in neurons overexpressing CaM(1-4) or CaM(3,4). In contrast, BDNF-induced activation of p42/44 MAPKs was unaffected by calmodulin mutations. Treatment of neurons with calmodulin antagonists and a phosphatidylinositol 3-kinase inhibitor blocked the ability of BDNF to prevent neuronal death, whereas inhibitors of calcium/ calmodulin-dependent protein kinase II did not. Our findings demonstrate a pivotal role for calmodulin in survival signaling by BDNF in developing neocortical neurons by activating a transduction pathway involving phosphatidylinositol 3-kinase and Akt. In addition, our findings show that the C-terminal Ca(2+)-binding sites are critical for calmodulin-mediated cell survival signaling.  相似文献   

2.
Tamoxifen plays a major role in the management of breast cancer in women and is currently used to a lesser extent in other neoplasias. Many of the pharmacological properties of tamoxifen are consistent with anti-estrogen activity, but it also has significant, although lesser, benefit in patients whose tumours are estrogen-receptor negative. We recently reported that murine B16 melanoma cell attachment to extracellular matrix proteins can be inhibited by calmodulin antagonists. In seeking a calmodulin antagonist that could be used clinically, we investigated tamoxifen, which is known to have calmodulin antagonist activity in vitro, and confirmed that it will inhibit murine melanoma cell attachment in vitro. In the current study, we examined the effect of tamoxifen on the attachment of human ocular melanoma cell lines to a range of extracellular matrix substrates to evaluate the potential relevance of calmodulin antagonists, including tamoxifen, to reducing metastatic spread of these tumours. We report that six ocular melanoma cell lines established from choroidal melanoma tumours showed rapid attachment to a range of substrates and that this attachment can be significantly reduced by an experimental calmodulin antagonist (J8) and by tamoxifen. In summary, we conclude that the ability of calmodulin antagonists, including tamoxifen, to inhibit ocular melanoma cell attachment to matrix proteins in vitro merits further investigation as it may offer another approach to reducing metastatic spread of these tumours.  相似文献   

3.
Ral GTPases may be involved in calcium/calmodulin-mediated intracellular signaling pathways. RalA and RalB are activated by calcium, and RalA binds calmodulin in vitro. It was examined whether RalA can bind calmodulin in vivo, whether RalB can bind calmodulin, and whether calmodulin is functionally involved in Ral activation. Yeast two-hybrid analyses demonstrated both Rals interact directly but differentially with calmodulin. Coimmunoprecipitation experiments determined that calmodulin and RalB form complexes in human platelets. In vitro pull-down experiments in platelets and in vitro binding assays showed endogenous Ral and calmodulin interact in a calcium-dependent manner. Truncated Ral constructs determined in vitro and in vivo that RalA has an additional calmodulin binding domain to that previously described, that although RalB binds calmodulin, its C-terminal region is involved in partially inhibiting this interaction, and that in vitro RalA and RalB have an N-terminal calcium-independent and a C-terminal calcium-dependent calmodulin binding domain. Functionally, in vitro Ral-GTP pull-down experiments determined that calmodulin is required for the thrombin-induced activation of Ral in human platelets. We propose that differential binding of calmodulin by RalA and RalB underlies possible functional differences between the two proteins and that calmodulin is involved in the regulation of the activation of Ral-GTPases.  相似文献   

4.
5.
The cellular protein calmodulin activates, in the presence of calcium ions, several functions and enzymes in eukaryotic cells. Calmodulin binds calcium and magnesium, and various calcium-calmodulin complexes bind to and activate both enzymes that regulate cellular calcium or cyclic nucleotides and specific protein kinases that regulate target enzymes by ATP-dependent phosphorylation. General principles of calmodulin activation are reviewed. The calmodulin-dependent enzymes show complicated activation kinetics and, in particular cases, the transitions between non-activated and activated enzyme states exhibit time-lag and hysteretic behaviour.  相似文献   

6.
We have previously published that bilateral adrenalectomy in the rat reduces the Ca2+-mediated alpha-adrenergic activation of hepatic glycogenolysis, while it increases the cellular calcium content of hepatocytes. In the experiments presented here, the concentration of cytosolic free calcium (Ca2+i) at rest and in response to epinephrine was measured in aequorin-loaded hepatocytes isolated from sham and adrenalectomized male rats. We found that in adrenalectomized rats the resting Ca2+i was elevated, the rise in Ca2+i evoked by epinephrine was reduced, and the rise in 45Ca efflux that follows such stimulation was depressed. Furthermore, the slope of the relationship between Ca2+i and calcium efflux was decreased 60% in adrenalectomized. Adrenalectomy did not change Ca2+ release from intracellular calcium pools in response to IP3 in saponin-permeabilized hepatocytes. The EC50 for inositol 1,4,5-triphosphate and the maximal Ca2+ released were similar in both sham and adrenalectomized animals. Finally, the liver calmodulin content determined by radioimmunoassay was not significantly different between sham and adrenalectomized rats. These results suggest that 1) adrenalectomy reduces calcium efflux from the hepatocyte, probably by an effect on the plasma membrane (Ca2+-Mg2+)-ATPase-dependent Ca2+ pump and thus alters cellular calcium homeostasis; 2) adrenalectomy decreases the rise in Ca2+i in response to epinephrine; 3) this decreased rise in Ca2+i is not due to defects in the intracellular Ca2+ storage and mobilization processes; and 4) the effects of adrenalectomy on cellular calcium metabolism and on alpha-adrenergic activation of glycogenolysis are not caused by a reduction in soluble calmodulin.  相似文献   

7.
8.
It has been reported that flunarizine, classified as calcium entry-blockers, is a potent brain protective drug without any heart depressant effect, contrasting with other drugs in this group. This paper presents evidence that through a competitive antagonism against calmodulin, a major intracellular calcium receptor, flunarizine inhibits the calcium X calmodulin-activated phosphodiesterase activity of bovine brain, but not of heart, whereas other calcium-entry blockers and calmodulin antagonists inhibit to the same extent, the activation of the enzyme from the two sources. It could be suggested that some of pharmacological effects by flunarizine and its differences from other calcium-entry blockers may be explained by its interaction with calmodulin.  相似文献   

9.
The role of calmodulin in the regulation of dolichol kinase   总被引:1,自引:0,他引:1  
A calcium ion-requiring CTP-dependent kinase that phosphorylates dolichol was found in particulate enzyme preparations from the protozoa Tetrahymena pyriformis. This enzyme and an analogous enzyme present in rat brain microsomes were both shown to be inactivated following washing with EGTA-containing buffers. The activity could be restored by the addition of calcium and the calcium-binding protein calmodulin. In addition, both enzymes were strongly inhibited by trifluoperazine, chlorpromazine, and antiserum against brain calmodulin. These results are evidence that the dolichol kinase from these two sources is regulated by a system involving calmodulin. Dolichol kinase is the enzyme that is believed to be important in the maintenance of the cellular levels of dolichyl phosphate, the factor which is likely to exert the most control over the rate of glycoprotein biosynthesis. On the other hand, microsomal preparations from rat liver which were shown to contain a dolichol kinase that does not require Ca2+ for activity showed no inactivation by EGTA treatment, trifluoperazine, chlorpromazine, or preincubation with antiserum against calmodulin. These findings indicate that the liver enzyme and thus the level of dolichol phosphate is controlled by a different mechanism than that of brain and T. pyriformis.  相似文献   

10.
The microinjection of calcium-saturated calmodulin into living fibroblasts causes the rapid disruption of microtubules and stress fibers in a sharply delimited region concentric with the injection site. This effect is specific to the calcium-bearing form of calmodulin; neither calcium-free calmodulin nor calcium ion at similar levels affects the cytoskeleton. If cells have previously been microinjected with calcium-free calmodulin, elevation of their intracellular calcium levels to 25 mM potentiates the disruption of microtubules throughout the cytoplasm. Approximately 400 mM free calcium is required to cause an equivalent disruption in uninjected cells. The level of calmodulin necessary to disrupt the full complement of cellular microtubules is found to be approximately in 2:1 molar ratio to tubulin dimer. These results indicate that calmodulin can be localized within the cytoplasm in a calcium-dependent manner and that it can act to regulate the calcium lability of microtubules at molar ratios that could be achieved locally within the cell. Our results are consistent with the hypothesis that calmodulin may be controlling microtubule polymerization equilibria in areas of high local concentration such as the mitotic spindle.  相似文献   

11.
c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.  相似文献   

12.
Role of calmodulin in the activation of tryptophan hydroxylase   总被引:7,自引:0,他引:7  
Tryptophan hydroxylase can be activated 2.0- to 2.5-fold in vitro by ATPa dn Mg2+. This apparent phosphorylation effect is not dependent on cyclic nucleotides but is dependent on the presence of calcium. The activation of tryptophan hydroxylase by ATP-Mg2+ reduces the apparent Km of the enzyme for its cofactor, 6-methyltetrahydropterin, from 0.21 to 0.09 mM. The addition of certain antipsychotic drugs known to bind to calmodulin in a phosphorylation reaction mixture prevents the activation to tryptophan hydroxylase by ATP-Mg2+ in the concentration-dependent fashion. External addition of purified calmodulin protects the enzyme from the drug-induced effects. Preparation of calmodulin-free tryptophan hydroxylase by affinity chromatography on fluphenazine-Sepharose 4B yields an enzyme that is no longer activated by ATP-Mg2+, whereas the readdition of calmodulin to a calmodulin-free enzyme restores the responsiveness of tryptophan hydroxylase to ATP-Mg2+. This restoration is dependent on Ca2+. Taken together, these results indicate that the activation of tryptophan hydroxylase by phosphorylating conditions is dependent on both calcium and calmodulin.  相似文献   

13.
《The Journal of cell biology》1985,101(5):1702-1712
An in vitro system was devised for studying phosphorylation of Chlamydomonas reinhardtii axonemal proteins. Many of the polypeptides phosphorylated in this system could be identified as previously described axonemal components that are phosphorylated in vivo. The in vitro system apparently preserved the activities of diverse axonemal kinases without greatly altering the substrate specificity of the enzymes. The in vitro system was used to study the effect of calcium concentration on axonemal protein phosphorylation. Calcium has previously been demonstrated to initiate the axonemal reversal reaction of the photophobic response; the in vitro system made it possible to investigate the possibility that this calcium effect is mediated by protein phosphorylation. Calcium specifically altered the phosphorylation of only two axonemal proteins; the phosphorylation of an otherwise unidentified 85,000 Mr protein was repressed by calcium concentrations greater than or equal to 10(-6) M, while the phosphorylation of the previously identified 95,000 Mr protein b4 was stimulated by calcium at concentrations greater than 10(-6) M. Protein b4 is one of six polypeptides that are deficient in the mbo mutants, strains that do not exhibit a photophobic reversal reaction. Therefore, this calcium-stimulated phosphorylation may be involved in initiating the photophobic response. Neither calmodulin nor the C-kinase could be implicated in b4 phosphorylation. The calcium-dependent activation of the b4 kinase was not affected by several drugs that bind to and inhibit calmodulin, or by the addition of exogenous calmodulin. Activators and inhibitors of the calcium-phospholipid-dependent C kinase also had no effect on b4 phosphorylation.  相似文献   

14.
Activation of calcium/calmodulin-dependent protein kinase II (CaMKII) by calmodulin following calcium entry into the cell is important for long-term potentiation (LTP). Here a model of calmodulin binding and trapping by CaMKII in a dendritic spine was used to estimate levels and durations of CaMKII activation following LTP-inducing tetani. The calcium signal was calcium influx through NMDA receptor channels computed in a highly detailed dentate granule cell model. Calcium could bind to calmodulin and calmodulin to CaMKII. CaMKII subunits were either free, bound with calmodulin, trapped, autonomous, or capped. Strong low-frequency tetanic input produced little calmodulin trapping or CaMKII activation. Strong high-frequency tetanic input caused large numbers of CaMKII subunits to become trapped, and CaMKII was strongly activated. Calmodulin trapping and CaMKII activation were highly dependent on tetanus frequency (particularly between 10 and 100 Hz) and were highly sensitive to relatively small changes in the calcium signal. Repetition of a short high-frequency tetanus was necessary to achieve high levels of CaMKII activation. Three stages of CaMKII activation were found in the model: a short, highly activated stage; an intermediate, moderately active stage; and a long-lasting third stage, whose duration depended on dephosphorylation rates but whose decay rate was faster at low CaMKII activation levels than at high levels. It is not clear which of these three stages is most important for LTP.  相似文献   

15.
Using Lilium davidii Duchartre pollen as material, the calcium ion-fluorescence indicator fluo-3AM was loaded successfully into the pollen grains by low temperature loading method. Laser confocal scanning microscopy was used to study the effect of extracellular calmodulin on intracellular calcium. It is found that the purified exogenous calmodulin could elevate the intracellular calcium ion concentration, and the effect was correlated with the concentration of exogenous calmodulin to a certain extent. Cell membrane nonpermeable inhibitor of calmodulin, W 7-agarose, and the anti-serum of calmodulin could decrease the cytosolic calcium level. The results show that the endogenous extracellular calmodulin may play an important role in maintaining and increasing the cytosolic calcium level in pollen grain cell.  相似文献   

16.
Abstract: We observed previously that activation of N -methyl- d -aspartate (NMDA) receptors in area CA1 of the hippocampus, through either NMDA application or long-term potentiation (LTP)-inducing high-frequency stimulation (HFS), results in an increase in cyclic AMP. In the present study, we performed experiments to determine the mechanism by which NMDA receptor activation causes this increase in cyclic AMP. As the NMDA receptor-mediated increase in cyclic AMP is dependent upon extracellular calcium, we hypothesized that NMDA receptors are coupled to adenylyl cyclase (AC) via calcium/calmodulin. In membranes prepared from area CA1, AC was stimulated by calcium in the presence of calmodulin, and the effect of calcium/calmodulin on AC in membranes was blocked by the calmodulin antagonists N -(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and trifluopera-zine (TFP). In intact hippocampal slices, W-7 and TFP blocked the increase in cyclic AMP levels caused by both NMDA application and HFS of Schaffer collateral fibers. Exposure of hippocampal slices to elevated extracellular potassium to induce calcium influx also caused increased cyclic AMP levels; the increase in cyclic AMP caused by high potassium was also blocked by W-7 and TFP. These data support the hypothesis that NMDA receptor activation is positively coupled to AC via calcium/calmodulin and are consistent with a role for cyclic AMP metabolism in the induction of NMDA receptor-dependent LTP in area CA1 of the hippocampus.  相似文献   

17.
Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils   总被引:4,自引:0,他引:4  
The NADPH oxidase of human neutrophils is highly sensitive to calcium concentration and is inhibited in intact cells and cell-free preparations by various phenothiazine drugs. Addition of calmodulin to preparations of NADPH oxidase stimulates enzymatic rates from 1.4-2.5-fold. Addition of calmodulin and calcium, but not calcium alone, to NADPH oxidase preparations which have been inactivated by EDTA results in the restoration of activity. No activation is observed when membrane preparations containing latent NADPH oxidase are exposed to calcium and calmodulin. These studies suggest a role for calmodulin in the control of NADPH oxidase but that calmodulin alone is not sufficient for activation.  相似文献   

18.
Abstract The yeast and mycelial phases of Ceratocystis ulmi contained roughly equivalent levels of calmodulin activity as determined by their ability to stimulate calmodulin-deficient bovine brain cAMP phosphodiesterase. This stimulation was calcium-dependent and could be inhibited by either dibucaine or trifluoperazine. Also, the concentration of dibucaine necessary to achieve the mycelium-to-yeast morphological conversion was found to be 3-fold greater in the presence of exogenous calcium. A model is presented in which only 30% of the cellular calmodulin need be complexed with calcium ions for mycelial development.  相似文献   

19.
G A Plishker 《Cell calcium》1984,5(2):177-185
Elevation of red blood cell calcium increases the efflux of potassium. The active extrusion of calcium from the red cell is regulated by calmodulin. Phenothiazines bind to calmodulin in a calcium-dependent manner preventing the calmodulin from activating a wide variety of cellular processes. The present study shows that phenothiazines increase the efflux of potassium from red cells incubated with the calcium ionophore A23187. The dose dependent effect of trifluoperazine on potassium efflux correlates with its inhibition of Ca-ATPase activity. The phenothiazine effects are dependent upon ATP in that increases in potassium efflux are not observed in energy depleted cells. In calcium buffered ghosts no direct effect of calmodulin or an antibody to calmodulin can be shown. These data suggest that phenothiazines stimulate calcium-dependent potassium loss indirectly by a drug-induced blockage of the calmodulin-activated Ca-ATPase.  相似文献   

20.
Continuous recording of the activity of recombinant adenylate cyclase (CyaA) of Bordetella pertussis (EC ) by conductimetric determination of enzyme-coupled pyrophosphate cleavage has enabled us to define a number of novel features of the activation of this enzyme by calmodulin and establish conditions under which valid activation data can be obtained. Activation either in the presence or absence of calcium is characterized by a concentration-dependent lag phase. The rate of formation and breakdown of the activated complex can be determined from an analysis of the lag phase kinetics and is in good agreement with thermodynamic data obtained by measuring the dependence of activation on calmodulin concentration, which show that calcium increases k(on) by about 30-fold. The rate of breakdown of the activated complex, formed either in the presence or absence of calcium, has been determined by dilution experiments and has been shown to be independent of the presence of calcium. The coupled assay is established as a rapid, convenient and safe method which should be readily applicable to the continuous assays of most other enzymes that catalyze reactions in which inorganic pyrophosphate is liberated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号