首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This work examined the novel hypothesis that reduced levels of H(2)S or L-cysteine (LC) play a role in the impaired glucose metabolism seen in diabetes. 3T3L1 adipocytes were treated with high glucose (HG, 25 mM) in the presence or absence of LC or H(2)S. Both LC and H(2)S treatments caused an increase in phosphatidylinositol-3,4,5 trisphosphate (PIP3), AKT phosphorylation, and glucose utilization in HG-treated cells. The effect of LC on PIP3 and glucose utilization was prevented by propargylglycine, an inhibitor of cystathionine γ-lyase that catalyzes H(2)S formation from LC. This demonstrates that H(2)S mediates the effect of LC on increased PIP3 and glucose utilization. H(2)S and LC caused phosphatidylinositol 3-kinase activation and PTEN inhibition. Treatment with LC, H(2)S, or PIP3 increased the phosphorylation of IRS1, AKT, and PKCζ/λ as well as GLUT4 activation and glucose utilization in HG-treated cells. This provides evidence that PIP3 is involved in the increased glucose utilization observed in cells supplemented with LC or H(2)S. Comparative signal silencing studies with siAKT2 or siPKCζ revealed that PKCζ phosphorylation is more effective for the GLUT4 activation and glucose utilization in LC-, H(2)S-, or PIP3-treated cells exposed to HG. This is the first report to demonstrate that H(2)S or LC can increase cellular levels of PIP3, a positive regulator of glucose metabolism. The PIP3 increase is mediated by PI3K activation and inhibition of PTEN but not of SHIP2. This study provides evidence for a molecular mechanism by which H(2)S or LC can up-regulate the insulin-signaling pathways essential for maintenance of glucose metabolism.  相似文献   

3.
Abstract

Context: G-protein coupled receptor (GPCR) signaling in skeletal muscle is incompletely understood; in particular, the signaling pathways that regulate GPCR-mediated signaling in skeletal muscle are only beginning to be established. Lysophosphatidic acid (LPA) is a GPCR agonist that has previously been shown to activate protein kinase D (PKD) in non-muscle cells; however, whether PKD is activated in response to LPA in skeletal muscle myoblasts, and the identities of signaling intermediates that regulate this activation, have not been defined. Objective: To determine whether PKD is activated in response to LPA administration in myoblasts, and to define the signaling pathways that mediate LPA-stimulated PKD phosphorylation. Methods: C2C12 myoblasts were treated with LPA and signaling pathways examined by means of Western immunoblotting and real-time PCR (RT-PCR). Pharmacological inhibition and RNA-interference were used to target specific molecules to determine their involvement in LPA-induced PKD phosphorylation. Results: Treatment of myoblasts with exogenous LPA revealed that PI3K p110β mediated PKD phosphorylation at Ser 748 and at Ser 916 through kinase-dependent and kinase-independent mechanisms. Loss of PKCδ, but not the loss of PKCα, prevented LPA-induced PKD phosphorylation. The PKD isoform responsive to LPA treatment was identified as PKD2. Conclusion: These results indicate that LPA-stimulated PKD2 phosphorylation requires PKCδ and non-catalytic actions of PI3K p110β, and provide new information with respect to GPCR-mediated signal transduction in myoblasts.  相似文献   

4.
The signalling pathways downstream of the transforming growth factor beta (TGFβ) family of cytokines play critical roles in all aspects of cellular homeostasis. The phosphorylation and activation of p38 mitogen-activated protein kinase (MAPK) has been implicated in TGFβ-induced epithelial-to-mesenchymal transition and apoptosis. The precise molecular mechanisms by which TGFβ cytokines induce the phosphorylation and activation of p38 MAPK are unclear. In this study, I demonstrate that TGFβ-activated kinase 1 (TAK1/MAP3K7) does not play a role in the TGFβ-induced phosphorylation and activation of p38 MAPK in MEFs and HaCaT keratinocytes. Instead, RNAi-mediated depletion of MAP3K4 and MAP3K10 results in the inhibition of the TGFβ-induced p38 MAPK phosphorylation. Furthermore, the depletion of MAP3K10 from cells homozygously knocked-in with a catalytically inactive mutant of MAP3K4 completely abolishes the TGFβ-induced phosphorylation of p38 MAPK, implying that among MAP3Ks, MAP3K4 and MAP3K10 are sufficient for mediating the TGFβ-induced activation of p38 MAPK.  相似文献   

5.

Objectives

The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling.

Methods

Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy.

Results

Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4) to the plasma membrane in diabetic hearts.

Conclusion

This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the development of diabetic cardiomyopathy and may be an effective target to improve cardiac function in diabetes.  相似文献   

6.
7.
Chemokines rapidly and transiently upregulate α4β1 and αLβ2 integrin-mediated adhesion during T lymphocyte extravasation by activating Gα-dependent inside-out signaling. To limit and terminate Gα-mediated signaling, cells can use several mechanisms, including the action of regulator of G protein signaling (RGS) proteins, which accelerate the GTPase activity of Gα subunits. Using human T cells silenced for or overexpressing RGS10, we show in this article that RGS10 functions as an inhibitor of Gα(i)-dependent, chemokine-upregulated T cell adhesion mediated by α4β1 and αLβ2. Shear stress-dependent detachment and cell spreading analyses revealed that RGS10 action mainly targets the adhesion strengthening and spreading phases of α4β1-mediated cell attachment. Associated with these observations, chemokine-stimulated Vav1-Rac1 activation was longer sustained and of higher intensity in RGS10-silenced T cells, or inhibited in cells overexpressing RGS10. Of importance, expression of constitutively activated Rac1 forms in cells overexpressing RGS10 led to the rescue of CXCL12-stimulated adhesion to VCAM-1 to levels similar to those in control transfectants. Instead, adhesion under flow conditions, soluble binding experiment, flow cytometry, and biochemical analyses revealed that the earlier chemokine-triggered integrin activation step was mostly independent of RGS10 actions. The data strongly suggest that RGS10 opposes activation by chemokines of the Vav1-Rac1 pathway in T cells, leading to repression of adhesion strengthening mediated by α4β1. In addition to control chemokine-upregulated T cell attachment, RGS10 also limited adhesion-independent cell chemotaxis and activation of cdc42. These results identify RGS10 as a key molecule that contributes to the termination of Gα-dependent signaling during chemokine-activated α4β1- and αLβ2-dependent T cell adhesion.  相似文献   

8.

Background

The present study was aimed at isolating an antidiabetic molecule from a herbal source and assessing its mechanism of action.

Methods

Embelin, isolated from Embelia ribes Burm. (Myrsinaceae) fruit, was evaluated for its potential to regulate insulin resistance, alter β-cell dysfunction and modulate key markers involved in insulin sensitivity and glucose transport using high-fat diet (HFD) fed-streptozotocin (STZ) (40 mg/kg)-induced type 2 diabetic rats. Molecular-dockings were performed to investigate the binding modes of embelin into PPARγ, PI3K, p-Akt and GLUT4 active sites.

Results

Embelin (50 mg/kg b wt.) reduced body weight gain, blood glucose and plasma insulin in treated diabetic rats. It further modulated the altered lipid profiles and antioxidant enzymes with cytoprotective action on β-cell. Embelin significantly increased the PPARγ expression in epididymal adipose tissue compared to diabetic control group; it also inhibited adipogenic activity; it mildly activated PPARγ levels in the liver and skeletal muscle. It also regulated insulin mediated glucose uptake in epididymal adipose tissue through translocation and activation of GLUT4 in PI3K/p-Akt signaling cascade. Embelin bound to PPARγ; it disclosed stable binding affinities to the active sites of PI3K, p-Akt and GLUT4.

Conclusions

These findings show that embelin could improve adipose tissue insulin sensitivity without increasing weight gain, enhance glycemic control, protect β-cell from damage and maintain glucose homeostasis in adipose tissue.

General significance

Embelin can be used in the prevention and treatment of type 2 diabetes mellitus caused due to obesity.  相似文献   

9.
10.
Protein kinase C (PKC) is a family of at least 10 isozymes involved in the activation of different signal transduction pathways. The exact function of these isozymes is not known at present. Isozyme-selective inhibitors would be important to explain the function of the different PKCs and are anticipated to have pharmaceutical potential. Here we report that the small organic molecule BAS 02104951 [5-(1,3-benzodioxol-5-ylmethylene)-1-(phenylmethyl)-2,4,6(1H,3H,5H)-pyrimidinetrion], a barbituric acid derivative, inhibited PKCη and PKCε in vitro (IC(50) 18 and 36 μM, respectively). BAS 02104951 also inhibited the interaction of PKCε with its adaptor protein receptor for activated C-kinase 2 (RACK2) (IC(50) 28.5 μM). BAS 02104951 also inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Elk-1 phosphorylation in HeLa cells, translocation of PKCε and PKCη to the membrane following treatment of PC3 cells with TPA. The compound did not inhibit the proliferation of PC3 and HeLa cells. BAS 02104951 can be used as selective inhibitor of PKCε in cells not expressing PKCη and may serve as a basis for the rational development of a selective inhibitor of PKCε or PKCη, or for an inhibitor of the PKCε/RACK2 interaction.  相似文献   

11.
The autophagy proteins (Atg) modulate not only innate but also adaptive immunity against pathogens. We examined the role of dendritic cell Atg5 and Atg7 in the production of IL-2 and IFN-γ by Toxoplasma gondii-reactive CD4+ T cells. T. gondii-reactive mouse CD4+ T cells exhibited unimpaired production of IL-2 and IFN-γ when stimulated with Atg7-deficient mouse dendritic cells that were infected with T. gondii or pulsed with T. gondii lysate antigens. In marked contrast, dendritic cells deficient in Atg5 induced diminished CD4+ T cell production of IL-2 and IFN-γ. This defect was not accompanied by changes in costimulatory ligand expression on dendritic cells or impaired production of IL-12 p70, IL-1β or TNF-α. Knockdown of Irg6a in dendritic cells did not affect CD4+ T cell cytokine production. These results indicate that Atg5 and Atg7 in dendritic cells play differential roles in the modulation of IL-2 and IFN-γ production by T. gondii-reactive CD4+ T cells.  相似文献   

12.
A scientific explanation for the beneficial role of vitamin D supplementation in the lowering of glycemia in diabetes remains to be determined. This study examined the biochemical mechanism by which vitamin D supplementation regulates glucose metabolism in diabetes. 3T3L1 adipocytes were treated with high glucose (HG, 25 mm) in the presence or absence of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (25, 50 nm), the active form of vitamin D. 1,25(OH)2D3 treatment caused significant up-regulation of GLUT4 total protein expression and its translocation to cell surface, and an increase in glucose uptake as well as glucose utilization in HG-treated cells. 1,25(OH)2D3 also caused cystathionine-γ-lyase (CSE) activation and H2S formation in HG-treated adipocytes. The effect of 1,25(OH)2D3 on GLUT4 translocation, glucose utilization, and H2S formation was prevented by propargylglycine, an inhibitor of CSE that catalyzes H2S formation. Studies using antisense CSE also demonstrated the inhibition of GLUT4 translocation as well as glucose uptake and utilization in 1,25(OH)2D3-supplemented CSE-siRNA-transfected adipocytes compared with controls. 1,25(OH)2D3 treatment along with insulin enhanced GLUT4 translocation and glucose utilization compared with either insulin or 1,25(OH)2D3 alone in HG-treated adipocytes. 1,25(OH)2D3 supplementation also inhibited monocyte chemoattractant protein-1 and stimulated adiponectin secretion in HG-treated adipocytes, and this positive effect was prevented in propargylglycine-treated or CSE-knockdown adipocytes. This is the first report to demonstrate that 1,25(OH)2D3 up-regulates GLUT4 translocation and glucose utilization and decreases inflammatory markers, which is mediated by CSE activation and H2S formation in adipocytes. This study provides evidence for a novel molecular mechanism by which 1,25(OH)2D3 can up-regulate the GLUT4 translocation essential for maintenance of glucose metabolism.  相似文献   

13.
Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, al owing them to cope with this stress.  相似文献   

14.
We have shown that cytotoxic T lymphocytes (CTL) raised in H-2 dmice use H-2Ld but not H-2Dd or H-2Kd antigens as restricting elements in lymphocytic choriomeningitis virus (LCMV) and vesicular stomatis virus (VSV) infections. To localize the regions of H-2Ld protein recognized by CTL, we constructed a recombinant H-2L d/D dgene encoding a hybrid antigen with 1 and 2 external domains of H-2Ld and 3, transmembrane and cytoplasmic domains of H-2Dd. The recombinant gene was transfected into mouse cells and the hybrid molecules were characterized serologically, biochemically and functionally. In all assays, H-2Ld/Dd molecules were recognized by LCMV- and VSV-specific H-2Ld-restricted CTL in a manner similar to that of wild-type H-2Ld antigens. Analogous results were obtained with alloreactive CTL. Hybrid antigens containing the 3 domain of H-2Ld fused to 1 and 2 domains of a Qa-2,3 region-encoded antigen were not used as restricting elements by LCMV-specific CTL. These results suggest that H-2Ld-restricted CTL directed against LCMV and VSV recognize determinants controlled by the 1 and/or 2 domains of the H-2Ld molecule.Abbreviations used in this paper CTL cytotoxic T lymphocytes - VSV vesicular stomatitis virus - LCMV lymphocytic choriomeningitis virus - tk thymidine kinase - HAT hypoxanthine, aminopterine, thymidine - HSV herpes simplex virus - FCS fetal calf serum - SAC Staphylococcus aureus Cowan I strain - TM transmembrane - CYT cytoplasmic  相似文献   

15.
AimsSepsis is a major cause of morbidity and mortality in the elderly population. In prior studies, we have shown that in vivo, the inflammatory response in aged animals is exaggerated as compared to young animals and that this response likely accounts for the increased morbidity and mortality. Part of this uncontrolled inflammatory response in sepsis is due to the innate immune response. However, recent studies have shown that the pathogenesis of sepsis is much more complex. The adrenergic autonomic nervous system is now thought to play a key role in modulating the inflammatory response in sepsis. In this study, we hypothesize that not only is the innate immune response enhanced in response to lipopolysaccharide (LPS) in aged animals, but that the adrenergic nervous system also plays a role in the release of excess inflammatory cytokines.Main methodsMale Fischer-344 rats (young: 3 months; aged: 24 months) were used. Endotoxemia was induced by intravenous injection of lipopolysaccharide (LPS, 15 mg/kg BW). Splenic tissues were harvested and mRNA and protein were extracted. The protein expression of CD14 and TLR4, key mediators of LPS in the innate response, as well as alpha-2A adrenergic receptor (α2A-AR) and phosphodiesterase 4D (PDE4D), as the means by which the autonomic nervous system exerts its effects were analyzed.Key findingsSplenic tissue concentrations of α2A-AR, PDE4D, CD14, and TLR4 were significantly increased in septic aged rats as compared to aged sham rats and septic young rats. The increased expression of α2A-AR in septic aged rats was further confirmed by immunohistochemical staining of splenic tissues.SignificanceThese data support the hypothesis that not only is the innate immune response increased in aged animals during sepsis, but that there is also an upregulated response of the adrenergic autonomic nervous system that contributes to excess proinflammatory cytokine release.  相似文献   

16.
17.

Background

The present study focuses on identifying and developing an anti-diabetic molecule from plant sources that would effectively combat insulin resistance through proper channeling of glucose metabolism involving glucose transport and storage.

Methods

Insulin-stimulated glucose uptake formed the basis for isolation of a bioactive molecule through column chromatography followed by its characterization using NMR and mass spectroscopic analysis. Mechanism of glucose transport and storage was evaluated based on the expression profiling of signaling molecules involved in the process.

Results

The study reports (i) the isolation of a bioactive compound 3β-taraxerol from the ethyl acetate extract (EAE) of the leaves of Mangifera indica (ii) the bioactive compound exhibited insulin-stimulated glucose uptake through translocation and activation of the glucose transporter (GLUT4) in an IRTK and PI3K dependent fashion. (iii) the fate of glucose following insulin-stimulated glucose uptake was ascertained through glycogen synthesis assay that involved the activation of PKB and suppression of GSK3β.

General significance

This study demonstrates the dual activity of 3β-taraxerol and the ethyl acetate extract of Mangifera indica as a glucose transport activator and stimulator of glycogen synthesis. 3β-taraxerol can be validated as a potent candidate for managing the hyperglycemic state.  相似文献   

18.
19.
Recent studies have demonstrated that one-carbon metabolism plays a significant role in cancer development. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme of one-carbon metabolism, has been reported to be dysregulated in many cancers. However, the specific role and mechanism of MTHFD2 in lung adenocarcinoma (LUAD) still remains unclear. In this study, we evaluated the clinicopathological and prognostic values of MTHFD2 in LUAD patients. We conducted a series of functional experiments in vivo and in vitro to explore novel mechanism of MTHFD2 in LUAD. The results showed that MTHFD2 was significantly up-regulated in LUAD tissues and predicted poor prognosis of LUAD patients. Knockdown of MTHFD2 dramatically inhibited cell proliferation and migration by blocking the cell cycle and inducing the epithelial-mesenchymal transition (EMT). In addition, MTHFD2 knockdown suppressed LUAD growth and metastasis in cell-derived xenografts. Mechanically, we found that MTHFD2 promoted LUAD cell growth and metastasis via AKT/GSK-3β/β-catenin signalling. Finally, we identified miR-30a-3p as a novel regulator of MTHFD2 in LUAD. Collectively, MTHFD2 plays an oncogenic role in LUAD progression and is a promising target for LUAD diagnosis and therapy.  相似文献   

20.
Changing kinetics of large-conductance potassium (BK) channels in hair cells of nonmammalian vertebrates, including the chick, plays a critical role in electrical tuning, a mechanism used by these cells to discriminate between different frequencies of sound. BK currents are less abundant in low-frequency hair cells and show large openings in response to a rise in intracellular Ca(2+) at a hair cell's operating voltage range (spanning -40 to -60 mV). Although the molecular underpinnings of its function in hair cells are poorly understood, it is established that BK channels consist of a pore-forming α-subunit (Slo) and a number of accessory subunits. Currents from the α (Slo)-subunit alone do not show dramatic increases in response to changes in Ca(2+) concentrations at -50 mV. We have cloned the chick β(4)- and β(1)-subunits and show that these subunits are preferentially expressed in low-frequency hair cells, where they decrease Slo surface expression. The β(4)-subunit in particular is responsible for the BK channel's increased responsiveness to Ca(2+) at a hair cell's operating voltage. In contrast, however, the increases in relaxation times induced by both β-subunits suggest additional mechanisms responsible for BK channel function in hair cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号