首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared to other birds, most raptors take large prey for their size, and feeding bouts are extended. However, ingestion rate has largely been overlooked as a constraint in raptors' foraging and breeding ecology. We measured ingestion rate by offering avian and mammalian prey to eighteen wild raptors temporarily kept in captivity, representing seven species and three orders. Ingestion rate was higher for small than for large prey, higher for mammalian than for avian prey, higher for large than for small raptors, and higher for wide-gaped than for narrow-gaped raptors. Mammalian prey were ingested faster by raptors belonging to species with mainly mammals in their diet than by raptors with mainly birds in their diet, but the drop in ingestion rate with increasing prey size was more rapid for the former than for the latter. We argue that the separate sex roles found in raptors, i.e. the male hunting and the female feeding the young, is a solution of the conflict between the prolonged feeding bouts at the nest, and the benefit of rapid resumption of hunting in general, and rapid return to the previous capture site in particular (the prey size hypothesis). Thus, the sex roles differ more when prey takes longer to feed, i.e. from insects to mammals to birds. We then argue that the reversed sexual size dimorphism in raptors, i.e. smaller males than females, results from a conflict between the benefit of being small during breeding to capture the smallest items with the highest ingestion rate among these agile prey types (mammals and bird), and the benefit of being large outside the breeding season to ensure survival by being able to include large items in the diet when small items are scarce (the ingestion rate hypothesis). This hypothesis explains the observed variation in reversed sexual size dimorphism among raptors in relation to size and type of prey, i.e. increasing RSD from insects to mammals to birds as prey.  相似文献   

2.
Heikki Hirvonen  Esa Ranta 《Oecologia》1996,106(3):407-415
We investigated foraging behaviour of larval dragonflies Aeshna juncea in order to examine the significance of prey density and body size in predator-prey dynamics. A. juncea were offered separately three size-classes of Daphnia magna at low and high densities. The data were collected with direct observations of the foraging individuals. We found that large A. juncea larvae could better enhance their intake of prey biomass as prey size and prey density increased than their smaller conspecifics. However, increasing feeding efficiency of both larval instars was constrained by declining attack success and search rate with increasing prey size and density. With small D. magna, in contrast to large A. juncea, small A. juncea increased their searching efficiency as prey density increased keeping D. magna mortality rate at a constant level. In a predator-prey relationship this indicates stabilizing potential and feeding thresholds set by both prey density and prey-predator size ratio. Attack success dropped with prey size and density, but did not change in the course of the foraging bout. For both A. juncea sizes prey handling times increased as more medium and large prey were eaten. The slope of the increase became steeper with increasing prey-predator size ratio. These observations indicate that components of the predator-prey relationship vary with prey density, contrary to the basic assumptions of functional response equations. Moreover, the results suggest that the effects of prey density change during the ontogeny of predators and prey.  相似文献   

3.
This paper derives optimal life histories for fishes or other animals in relation to the size spectrum of the ecological community in which they are both predators and prey. Assuming log-linear size-spectra and well known scaling laws for feeding and mortality, we first construct the energetics of the individual. From these we find, using dynamic programming, the optimal allocation of energy between growth and reproduction as well as the trade-off between offspring size and numbers. Optimal strategies were found to be strongly dependent on size spectrum slope. For steep size spectra (numbers declining rapidly with size), determinate growth was optimal and allocation to somatic growth increased rapidly with increasing slope. However, restricting reproduction to a fixed mating season changed optimal allocations to give indeterminate growth approximating a von Bertalanffy trajectory. The optimal offspring size was as small as possible given other restrictions such as newborn starvation mortality. For shallow size spectra, finite optimal maturity size required a decline in fitness for large size or age. All the results are compared with observed size spectra of fish communities to show their consistency and relevance.  相似文献   

4.
Food acquisition in central-place foraging animals demands efficient detection and retrieval of resources. Most ant species rely on a mass recruitment foraging strategy, which requires that some potential foragers remain at the nest where they can be recruited to food once resources are found. Because this strategy reduces the number of workers initially looking for food, it may reduce the food detection rate while increasing the postdiscovery food retrieval rate. In previous studies this tradeoff has been analyzed by computer simulation and mathematical models. Both kinds of models show that food acquisition rate is greatly influenced by food distribution and resource patch size: as food is condensed into fewer patches, the maximal acquisition rate is achieved by a shift to fewer initial searchers and more potential recruits. In general, these models show that a mass recruitment strategy is most effective when resources are clumped. We tested this prediction in two experiments by letting laboratory colonies of the Argentine ant (Linepithema humile) forage for resources placed in different distributions. When all prey were small, retrieval rate increased with increasing resource patch size, in support of foraging models. When prey were large, however, the mass of prey returned to the colony over time was much lower than when prey were small and widely distributed. As more ants reached a large prey item, the distance the prey item was transported decreased due to a greater emphasis on feeding rather than transport. Because Argentine ants can transport more biomass externally than they can ingest, food retrieval that depends only on ingestion can depress the biomass retrieval rate. Thus, our results generally support theoretical foraging models, but we show how prey size, through differential prey-handling behavior, can produce an outcome greatly different from that predicted only on the distribution of resources.  相似文献   

5.
1. Neomysis mercedis predation rates on Daphnia magna were determined under laboratory conditions. There were generally no consistent differences between the number of Daphnia ingested at 10 and 14°C. 2. At each temperature, the number of prey consumed increased with mysid size and decreased with Daphnia size. 3. For small prey the relationship between ingestion rate and prey density represented a Type II functional response. However, for larger prey there was no significant relationship between density of prey and consumption by mysids. 4. The pattern of size-selective predation by Neomysis was studied to test the optimal foraging hypothesis. For prey populations with mixed size classes, the smallest size of prey was consumed most frequently but intermediate size prey provided the greatest biomass. These observations are contrary to our predictions based on calculations of profitability of different sizes of prey.  相似文献   

6.
Predator body size often indicates predation risk, but its significance in non-consumptive effects (NCEs) and predator risk assessment has been largely understudied. Although studies often recognize that predator body size can cause differing cascading effects, few directly examine prey foraging behavior in response to individual predator sizes or investigate how predator size is discerned. These mechanisms are important since perception of the risk imposed by predators dictates behavioral responses to predators and subsequent NCEs. Here, we evaluate the role of predator body size and biomass on risk assessment and the magnitude of NCEs by investigating mud crab foraging behavior and oyster survival in response to differing biomasses of blue crab predators using both laboratory and field methods. Cues from high predator biomass treatments including large blue crab predators and multiple small blue crab predators decreased mud crab foraging and increased oyster survival, whereas mud crab foraging in response to a single small blue crab did not differ from controls. Mud crabs also increased refuge use in the presence of large and multiple small, but not single small, blue crab predators. Thus, both predator biomass and aggregation patterns may affect the expression of NCEs. Understanding the impact of predator biomass may therefore be necessary to successfully predict the role of NCEs in shaping community dynamics. Further, the results of our laboratory experiments were consistent with observed NCEs in the field, suggesting that data from mesocosm environments can provide insight into field situations where flow and turbulence levels are moderate.  相似文献   

7.
The Magellan region is a unique peri-Antarctic ecosystem due to its geographical position. However, the knowledge about the distribution and feeding ecology of fish larvae is scarce. Since this area is characterized by low phytoplankton biomass, we hypothesize that marine fish larvae display different foraging tactics in order to reduce diet overlap. During austral spring 2009–2010, two oceanographic cruises were carried out along southern Patagonia (50–56°S). Larval fish distribution and feeding of the two most widely distributed species were studied, the smelt Bathylagichthys parini (Bathylagidae) and black southern cod Patagonotothen tessellata (Nototheniidae). Larvae of B. parini showed a lower increase in the mouth gape at size, primarily feeding during daytime (higher feeding incidence during the day) mostly on nonmotile prey (invertebrate and copepod eggs, appendicularian fecal pellets, diatoms). They showed no increase in feeding success (number, total volume of prey per gut and prey width) with increasing larval size, and the niche breadth was independent of larval size. Larvae of P. tessellata showed a large mouth gape at size, which may partially explain the predation on motile prey like large calanoid copepods (C. simillimus) and copepodites. They are nocturnal feeders (higher feeding incidence during night) and are exclusively carnivorous, feeding on larger prey as the larvae grow. Nonetheless, niche breadth was independent of larval size. Diet overlap was important only in individuals with smaller mouth gape (<890 μm) and diminished as larvae (and correspondingly their jaw) grow. In conclusion, in the peri-Antarctic Magellan region, fish larvae of two species display different foraging tactics, reducing their trophic overlap throughout their development.  相似文献   

8.
A mathematical model of the attack success of planktonic predators(fish larvae and carnivorous copepods) is proposed. Based ona geometric representation of attack events, the model considershow the escape reaction characteristics (speed and direction)of copepod prey affect their probability of being captured.By combining the attack success model with previously publishedhydrodynamic models of predator and prey perception, we examinehow predator foraging behaviour and prey perceptive abilityaffect the size spectra of encountered and captured copepodprey. We examine food size spectra of (i) a rheotactic cruisingpredator, (ii) a suspension-feeding hovering copepod and (iii)a larval fish. For rheotactic predators such as carnivorouscopepods, a central assumption of the model is that attack istriggered by prey escape reaction, which in turn depends onthe deformation rate of the fluid created by the predator. Themodel demonstrates that within a species of copepod prey, theability of larger stages to react at a greater distance fromthe predator results in increased strike distance and, hence,lower capture probability. For hovering copepods, the vorticityfield associated with the feeding current also acts in modifyingthe prey escape direction. The model demonstrates that the reorientationof the prey escape path towards the centre of the feeding current'sflow field results in increased attack success of the predator.Finally, the model examines how variability in the kineticsof approach affects the strike distance of larval fish. In caseswhere observational data are available, model predictions closelyfit observations.  相似文献   

9.
Synopsis Fish larvae are selective planktivores, and size is an important factor in prey selection. However, for herring larvae, a selection model based solely on the principle of optimising calorific gain per unit energy expenditure consistently overestimates the mean size of ingested prey. Most such models ignore the escape capabilities and shape of the prey, and the potential role of escape on capture success. In this paper, a static foraging model incorporating both selection and escape is described and tested against published data on the composition of herring larvae stomach contents. The results indicate that prey escape is a major factor structuring the diet composition of the larvae.  相似文献   

10.
A one-dimensionsal (z, t) plankton model incorporating mixedlayer dynamics suggests die following: wind events can be detrimentalto larval northern anchovy, Engraulis mordax, which need tofeed on concentrations of plankton localized within the watercolumn. Wind mixing dissipates vertical structure in prey distributions.Interacting biological and physical processes determine thetime interval before high concentrations of prey are re-established,i.e. the starvation period endured by the anchovy larvae. Phytoplanktongrowth, herbivore grazing and reproduction, and plankton verticalmigration govern the rate of re-establishment of vertical structurein plankton distributions, once wind conditions allow turbulencein the upper water column to dissipate. If there is a net nutrientflux into the euphotic zone, local concentrations of prey afterthe wind event may be higher than before the event. This mayenhance larval anchovy survival, providing the starvation periodis not too long.  相似文献   

11.
The diet of Scutisorex somereni (Soricomorpha: Soricidae) from forests in the Democratic Republic of Congo was investigated to elucidate its feeding ecology in the context of its unique spinal modifications. It ate a wide range of small and large invertebrates, including representatives of Coleoptera, Formicidae, Lepidoptera and Diptera larvae, Chilopoda, Diplopoda and Araneae, but the principal prey was Oligochaeta. All diet samples contained Oligochaeta and these contributed 38–45% of prey volume. While 64% of prey occurrences were <10 mm in length, 56% of prey volume comprised invertebrates >26 mm, mostly large Oligochaeta (some of >50 mm). Soil-dwelling prey comprised 46% by composition (59% by volume) of the diet. Besides its peculiar skeletal modifications, it has an exceptionally long intestine relative to its body size. It was concluded that S. somereni is primarily an earthworm-eating shrew and partially subterranean rather than truly fossorial in foraging mode. Its diet and foraging mode cannot explain the unique vertebral modifications of this zoological curiosity.  相似文献   

12.
Feeding by marine fish larvae: developmental and functional responses   总被引:10,自引:0,他引:10  
Synopsis The relationship between prey consumption rate and prey concentration (functional response), and its change with growth (developmental response) were examined in the laboratory for three species of marine fish larvae: bay anchovy Anchoa mitchilli (Engraulidae), sea bream Archosargus rhomboidalis (Sparidae) and lined sole Achirus lineatus (Soleidae). The major objective was to determine relative predatory abilities of the larvae by fitting feeding rate data to developmental and functional response models. Feeding success, prey capture success, attack rates, handling times and search rates were estimated. Prey consumption rates and attack rates of bay anchovy usually were highest, but at the lowest prey level (50 per liter) first-feeding sea bream larvae had the highest consumption rate. Sea bream could consume prey at near-maximum rates at prey levels lower than those required by the other species. As larvae grew, time searching per attack decreased rapidly for all species, especially at low prey levels. Handling time also decreased, but most rapidly for bay anchovy. Search rates were highest for bay anchovy and lowest for lined sole. Bay anchovy had the best apparent predation ability, but when previous results on larval growth rates, survival rates and growth efficiencies were considered, sea bream larvae were the most efficient predators and the least likely of the three species to be limited by low prey levels.  相似文献   

13.
Synopsis Spatially-explicit modeling of fish growth rate potential is a relatively new approach that uses physical and biological properties of aquatic habitats to map spatial patterns of fish growth rate potential. Recent applications of spatially-explicit models have used an arbitrary spatial scale and have assumed a fixed foraging efficiency. We evaluated the effects of spatial scale, predator foraging efficiency (combined probabilities of prey recognition, attack, capture, and ingestion), and predator spatial distribution on estimates of mean growth rate potential of chinook salmon,Oncorhynchus tshawytscha. We used actual data on prey densities and water temperatures taken from Lake Ontario during the summer, as well as, simulated data assuming binomial distribution of prey. Results show that a predator can compensate for low foraging efficiency by inhabiting the most profitable environments (regions of high growth rate potential). Differences exist in predictions of growth rate potential across spatial scales of observation and a single scale may not be adequate for interpreting model results across seasons. Continued refinements of this modeling approach must focus on the assumptions of stationary distributions of predator and prey populations and predator foraging tactics.  相似文献   

14.
Is arthropod predation exclusively satiation‐driven?   总被引:4,自引:0,他引:4  
Functional response models differ in which factors limit predation (e.g. searching efficiency, prey handling time, digestion) and whether predation behaviour is governed by an internal physiological state (e.g. satiation). There is now much evidence that satiation is a key factor in understanding changes in foraging behaviour, and that many predators are effectively digestion limited. Here, we ask if predation in a predatory arthropod can be explained from satiation-driven behaviour alone, or if behaviour is also influenced by the density of prey other than via the effect of prey ingestion on satiation. To address this question a satiation-based predation model is formulated, for which parameters are estimated on the basis of observations on digestion rate, satiation-related prey searching rate and prey capture behaviour, basically under high prey density conditions. The model predictions are subsequently tested against longer term predation experiments carried out at high and low prey densities. Since satiation can easily be linked with egg production, these tests are carried out both for predation and oviposition.
The predator–prey systems under study consist of females of two predatory mite species ( Neoseiulus barkeri and N. cucumeris ) and the larvae of two thrips species ( Thrips tabaci and Frankliniella occidentalis ) as their prey. For N. barkeri foraging on T. tabaci , the model gives good predictions at both high (4 larvae cm−1) and low (0.1–1 larvae cm−2) prey densities. For N. cucumeris foraging on F. occidentalis , the predictions hold at the high prey density, but are too low at low prey densities. Thus our analysis indicates that we cannot fully explain density-dependent predation rates from satiation-driven behaviour alone. Different mechanisms are suggested on how prey density may affect foraging efficiency other than via satiation.  相似文献   

15.
Abstract 1. Pit‐building antlions are small sit‐and‐wait arthropod predators, which dig conical pits in sandy soils. We studied how biotic (conspecific density and feeding regime) and abiotic (sand depth) factors affect pit diameter and depth, while taking into account the larval body mass. 2. Pit diameter increased with larval body mass at a decelerating rate. In addition, larger larvae tended to relocate less frequently than smaller ones. 3. Sand depth positively affected overall pit size, while increasing conspecific density had a weaker but negative effect on pit size. 4. Feeding the antlions resulted in an increase in pit diameter compared with an unfed control group. However, as prey size increased this positive effect diminished. This result suggests that the existence of prey provides information about the quality of the microhabitat, triggering pit extension. However, similarly to the reduction in the foraging effort of saturated predators, antlions provided with large prey invested only little effort in pit enlargement. 5. Antlions were previously shown to be sensitive to prey and conspecific vibrations in the sand. We thus expected the feeding regime of the neighbour to affect antlion behaviour – surrogate of discriminating between local and global shortage of prey. Nevertheless, antlions with fed neighbours (a local prey shortage) did not show different behaviour compared with a control group in which both antlions were unfed (a global prey shortage).  相似文献   

16.
Research in foraging theory has been dominated by studies ofactive foragers choosing among patches and among prey withina patch. Studies of central-place foraging have mainly focusedon loading decisions of an animal provisioning a central place.The problem faced by a sit-and-wait forager that encountersprey at a distance has received little attention. In this studywe tested foraging theory predictions for such foragers, Anolisgingivinus females in the West Indies island of Anguilla. Wepresented lizards with antlion larvae at various distances.Experiment 1 showed that an individual's probability of pursuingprey decreases with the prey's distance and is best describedby a sigmoidal function (which may be as steep as a step function).This function's inflection point defines a cutoff distance.Experiment 3 tested how cutoff distance changes as a functionof prey size. Cutoff distances were greater for larger prey,as predicted for an energy-maximizing forager. Experiments 2and 4 tested how cutoff distance changes as a function of preyabundance. As predicted, cutoff distance were greater at a sitewhere prey abundance was lower. Furthermore, cutoff distancesdecreased immediately following prey augmentation and returnedto previous values within one day of ending augmentation. Thus,moles' foraging behavior is a dynamic process, consistent withthe qualitative predictions of foraging theory. We attributethe success of this study in supporting fundamental foragingtheory predictions to the lizards exhibiting natural behaviorunder field conditions and to particular advantages of studyingsit-and-wait foragers.  相似文献   

17.
Summary We examined how prey size-distributions influence size-specific foraing rate and food gain, i.e., food intake scaled to metabolic demands, in Jefferson's and small-mouth salamander larvae. Ambystoma jeffersonianum larvae sampled on 17 dates from a farm pond whose fauna was dominated by macrozooplankton and chironomid larvae were rarely gape-limited, and total volume of food in the stomach (VS) showed only a slight tendency to increase with larval size. Although 15 of 17 correlation coefficients of VS with larval size were positive, only 1 of 17 correlations were statistically significant, and body size explained only 8% of the overall variation in VS. Correlation coefficients of food gain and body size were positive in 9 cases and negative in 8, but only 3 were statistically significant.In contrast, Ambystoma texanum larvae in 42 samples taken from five sites dominated by macrozooplankton as well as relatively large isopods and amphipods were almost always gape-limited, and VS tended to increase markedly with larval size. 40 of 42 correlation coefficients of VS and larval size were positive, and 19 correlations were statistically significant. Body size in turn explained about 35% of the overall variation in VS. Correlation coefficients of food gain and larval size were positive in 32 of 42 samples, and 9 of 10 significant correlations were positive.When food is limiting and prey selection is not limited by gape, smaller larvae may grow as fast or in some cases faster than larger larvae because they are nearly as effective foragers, but have lower metabolic demands. Larger larvae may in turn grow faster than smaller larvae in environments which support a broad size spectrum of prey, particularly when gape limitations are highly disproportionate among size classes. The growth rate of larvae in one size class relative to another depends primarily on the extent to which increased foraging rate compensates for higher energy demands as body size increases. Size-specific foraging rate may in turn be strongly influenced by the prey size-distribution within a habitat. These relationships suggest that relative size is not always a good a priori predictor of exploitative competitive ability.  相似文献   

18.
The jumbo squid Dosidicus gigas plays an important role in marine food webs both as predator and prey. We investigated the ontogenetic and spatiotemporal variability of the diet composition of jumbo squid in the northern Humboldt Current system. For that purpose we applied several statistical methods to an extensive dataset of 3,618 jumbo squid non empty stomachs collected off Peru from 2004 to 2011. A total of 55 prey taxa was identified that we aggregated into eleven groups. Our results evidenced a large variability in prey composition as already observed in other systems. However, our data do not support the hypothesis that jumbo squids select the most abundant or energetic taxon in a prey assemblage, neglecting the other available prey. Indeed, multinomial model predictions showed that stomach fullness increased with the number of prey taxa, while most stomachs with low contents contained one or two prey taxa only. Our results therefore question the common hypothesis that predators seek locally dense aggregations of monospecific prey. In addition D. gigas consumes very few anchovy Engraulis ringens in Peru, whereas a tremendous biomass of anchovy is potentially available. It seems that D. gigas cannot reach the oxygen unsaturated waters very close to the coast, where the bulk of anchovy occurs. Indeed, even if jumbo squid can forage in hypoxic deep waters during the day, surface normoxic waters are then required to recover its maintenance respiration (or energy?). Oxygen concentration could thus limit the co-occurrence of both species and then preclude predator-prey interactions. Finally we propose a conceptual model illustrating the opportunistic foraging behaviour of jumbo squid impacted by ontogenetic migration and potentially constrained by oxygen saturation in surface waters.  相似文献   

19.
Selected cases of plankton studies were analyzed to illustrate the main types of relationships between the zooplankton and the ichthyoplankton abundance observed in the pelagic realm. Such relationships may exhibit a positive, a negative, or a random pattern. In the conceptual model here proposed, short-term oscillations among these patterns were attributed to small-scale biological processes, such as competition, predation, and intraguild predation, acting in conjunction with water turbulence. A negative relationship between zooplankton and ichthyoplankton abundance may be caused both by predation on fish eggs and larvae, and by detrimental competition and intraguild predation interactions for fish larvae. In contrast, positive relationships emerge from the absence or low abundance of major predators on the ichthyoplankton, and from food availability for fish larvae and competing species. The random pattern may appear as a gradual transitional stage between the negative and positive patterns, or be promoted by strong water turbulence – which generates random movements of individuals. The size of zooplankters greatly influences these small-scale phenomena. Hence, their role in the trophic web, the success in competition interactions and vulnerability to water turbulence depends on their size. Intra- and interspecific competition may be reduced by variability in body size within or among fish larvae populations. Owing to a strong interaction among phenomena at different scales, these small-scale processes are also influenced by larger scale features, such as seasonal changes in zooplankton biomass, water currents, or spawning periods of fish. At the space level, some theoretical studies have emphasized the role of water currents as a vector for fish larvae to reach the nursery grounds (migration triangle hypothesis), or to allow them to remain within their own population’s distributional area (member/vagrant hypothesis). At the temporal level, the match/mismatch theory insists in a synchrony between reproductive strategies of fish and cyclical changes in abundance and size spectrum of potential prey items for their larvae. In any case, a coincidence between favorable abiotic and biotic features during the whole life-cycle of fish would assure a success in survival of larvae and their subsequent recruitment to adult population.  相似文献   

20.
Managed wetlands provide critical foraging and roosting habitats for shorebirds during migration; therefore, ensuring their availability is a priority action in shorebird conservation plans. Contemporary shorebird conservation plans rely on a number of assumptions about shorebird prey resources and migratory behavior to determine stopover habitat requirements. For example, the US Shorebird Conservation Plan for the Southeast-Caribbean region assumes that average benthic invertebrate biomass in foraging habitats is 2.4 g dry mass m?2 and that the dominant prey item of shorebirds in the region is Chironomid larvae. For effective conservation and management, it is important to test working assumptions and update predictive models that are used to estimate habitat requirements. We surveyed migratory shorebirds and sampled the benthic invertebrate community in coastal managed wetlands of South Carolina. We sampled invertebrates at three points in time representing early, middle, and late stages of spring migration, and concurrently surveyed shorebird stopover populations at approximately 7-day intervals throughout migration. We used analysis of variance by ranks to test for temporal variation in invertebrate biomass and density, and we used a model based approach (linear mixed model and Monte Carlo simulation) to estimate mean biomass and density. There was little evidence of a temporal variation in biomass or density during the course of spring shorebird migration, suggesting that shorebirds did not deplete invertebrate prey resources at our site. Estimated biomass was 1.47 g dry mass m?2 (95 % credible interval 0.13–3.55), approximately 39 % lower than values used in the regional shorebird conservation plan. An additional 4728 ha (a 63 % increase) would be required if habitat objectives were derived from biomass levels observed in our study. Polychaetes, especially Laeonereis culveri (2569 individuals m?2), were the most abundant prey in foraging habitats at our site. Polychaetes have lower caloric content than levels assumed in the regional plan; when lower caloric content and lower biomass levels are used to determine habitat objectives, an additional 6395 ha would be required (86 % increase). Shorebird conservation and management plans would benefit from considering the uncertainty in parameters used to derive habitat objectives, especially biomass and caloric content of prey resources. Iterative testing of models that are specific to the planning region will provide rapid advances for management and conservation of migratory shorebirds and coastal managed wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号