首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VPS4B, an AAA ATPase (ATPase associated with various cellular activities), participates in vesicular trafficking and autophagosome maturation in mammalian cells. In solid tumors, hypoxia is a common feature and an indicator of poor treatment outcome. Our studies demonstrate that exogenous or endogenous (assessed with anchorage-independent three-dimensional multicellular spheroid culture) hypoxia induces VPS4B downregulation by the ubiquitin-proteasome system. Inhibition of VPS4B function by short hairpin VPS4B (sh-VPS4B) or expression of dominant negative VPS4B(E235Q) promotes anchorage-independent breast cancer cell growth and resistance to gefitinib, U0126, and genotoxicity. Biochemically, hyperactivation of epidermal growth factor receptor (EGFR), a receptor tyrosine kinase essential for cell proliferation and survival, accompanied by increased EGFR accumulation and altered intracellular compartmentalization, is observed in cells with compromised VPS4B. Furthermore, enhanced FOS/JUN induction and AP-1 promoter activation are noted in EGF-treated cells with VPS4B knockdown. However, VPS4B depletion does not affect EGFRvIII stability or its associated signaling. An inverse correlation between VPS4B expression and EGFR abundance is observed in breast tumors, and high-grade or recurrent breast carcinomas exhibit lower VPS4B expression. Together, our findings highlight a potentially critical role of VPS4B downregulation or chronic-hypoxia-induced VPS4B degradation in promoting tumor progression, unveiling a nongenomic mechanism for EGFR overproduction in human breast cancer.  相似文献   

2.
MicroRNA-200a (miR-200a) has been reported to regulate tumour progression in several tumours; however, little is known about its role in non-small cell lung cancer cells (NSCLCs). Here, we found that miR-200a was up-regulated in A549 and SK-MES-1 cells compared with normal lung cells HELF. By a series of gain-of-function and loss-of-function studies, over-expression of miR-200a was indicated to enhance cells migration, and its knock-down inhibited migration of cells in NSCLC cell lines. Furthermore, miR-200a was identified to induce TSPAN1 expression which was related to migration. TSPAN1 was proved to induce migration, and so up-regulation of TSPAN1 by miR-200a may explain why over-expressing miR-200a promotes NSCLC cells migration.  相似文献   

3.
PC-1基因表达增强C4-2B前列腺癌细胞生存   总被引:1,自引:0,他引:1  
建立稳定表达外源PC-1基因的人前列腺癌骨转移C4-2B细胞模型,初步探讨PC- 1基因表达对前列腺癌发展的影响.通过脂质体介导的方法,将融合PC-1基因的真核表达载体pcDNA3.1PC-1稳定转染C4-2B细胞,Western 印迹和RT-PCR技术,分别从蛋白水平和RNA水平确定外源PC-1基因表达. MTT和软琼脂集落形成能力等一系列方法,研究PC-1基因的功能,RT-PCR和实时定量PCR检测前列腺癌发生发展相关基因表达的变化. 结果表明,PC-1基因的高表达能够诱导雄激素受体(AR)调控基因和一系列重要的信号通路成员基因PSA、PSMA、NKX31、Jagged1、EphA3、SGEF和 NOTCH3等表达发生变化. 实验结果初步证明,PC-1基因表达在晚期前列腺癌中,以及在雄激素非依赖的转变中可以发挥作用,PC-1基因表达可调控一些重要信号通路.对PC-1基因功能深入研究将有可能为发现新的前列腺癌的诊断治疗分子靶标提供线索.  相似文献   

4.
摘要 目的:探索HOXC8与PDX1在非小细胞肺癌(non-small lung cancer, NSCLC)细胞生长及上皮间质转化(Epithelial-mesenchymal transition, EMT)的作用机制。方法:通过转录组测序、荧光定量PCR及染色质免疫沉淀等方法筛选并鉴定HOXC8调控的靶基因;通过Western blot、CCK-8、克隆集落生成及生物信息学等手段分析靶基因PDX1在非小细胞肺癌中的作用。结果:实验证明HOXC8可结合到PDX1基因的启动子上,并作为转录因子激活PDX1的表达。PDX1的表达促进NSCLC细胞的生长与EMT过程,而沉默PDX1能显著地抑制NSCLC细胞的生长与EMT过程,并诱导细胞的凋亡。通过分析已知的肿瘤数据库, 我们发现在NSCLC中PDX1的表达显著高于正常组织,且PDX1的高表达与肺癌患者的预后不良呈显著的相关性。结论:本研究发现HOXC8-PDX1轴在非小细胞肺癌中起着重要的调节作用, 可有望成为非小细胞肺癌治疗的新靶点。  相似文献   

5.
Lung cancer, predominantly non-small cell lung cancer (NSCLC), is currently the most common cause of malignancy-related death in the world. Despite advances in both detection and treatment, its incidence rate is still increasing. Therefore, effective strategies for early detection as well as molecular therapeutic targets are urgently needed. We focused on the enzyme nicotinamide N-methyltransferase (NNMT). NNMT expression levels were investigated in tumor, tumor-adjacent, and surrounding tissue samples of 25 patients with NSCLC by Real-Time PCR, Western blot analysis, and catalytic activity assay. NNMT enzyme activity in NSCLC was then correlated with clinicopathological characteristics. Results obtained showed NNMT upregulation (mRNA and protein) in tumor compared with both tumor-adjacent and surrounding tissue. Moreover, NSCLC displayed significantly higher activity levels than those determined in both tumor-adjacent and surrounding tissue. Interestingly, both tumor-adjacent and surrounding tissue samples of unfavorable cases (N+) seem to display higher activity levels than those of favorable NSCLCs (N0). The present work shows a marked increase of NNMT enzyme activity in NSCLC and suggests that normal-looking tissue of unfavorable cases seems to change toward cancer. Further studies may establish whether NNMT could represent a target for an effective anti-cancer therapy.  相似文献   

6.
SR splicing-factors (SRSFs) play a vital role in carcinogenesis. SRSF5 was demonstrated to be upregulated in lung cancer and identified as a novel prognostic indicator for small-cell lung cancer. However, the role of SRSF5 in the pathogenesis of non–small cell lung cancer (NSCLC) and the molecular mechanism involved are still undefined. The expression of SRSF5 in NSCLC cells was detected by quantitative real-time polymerase chain reaction and Western blot analysis. The proliferation of cells was evaluated by cell counting kit-8 and BrdU assays. Apoptosis was assessed by flow cytometry and Western blot analysis of apoptosis-associated proteins including B-cell lymphoma 2 (Bcl-2), Bax, and cytochrome C (Cyt C). Glycolysis was detected by determining glucose consumption, lactate production, and pyruvate kinase M2 (PKM2) expression. We found that SRSF5 messenger RNA and protein levels were elevated in NSCLC cells. SRSF5 knockdown inhibited the proliferation and Ki67 expression in NSCLC cells. SRSF5 silencing increased the apoptotic rate, upregulated Bax and Cyt C, and decreased Bcl-2 level in NSCLC cells. Moreover, Knockdown of SRSF5 repressed glycolysis in NSCLC cells via reducing PKM2 expression. Enhanced glycolysis by PKM2 overexpression attenuated the effects of SRSF5 silencing on NSCLC cell proliferation and apoptosis. Overall, knockdown of SRSF5 inhibited proliferative ability and induced apoptosis by suppressing PKM2 expression in NSCLC cells.  相似文献   

7.
Vacuolar protein sorting 4 (VPS4), is a member of ATPases associated with diverse cellular activities protein family. VPS4 is composed of VPS4A and VPS4B, VPS4B plays an important role in the lysosomal degradation pathway, intracellular protein trafficking, virus budding and abscission of cytokinesis. However, information regarding its distribution and possible function in the central nervous system is limited. Therefore, we performed a middle cerebral artery occlusion (MCAO) in adult rats and detected the dynamic changes of VPS4B in hippocampus CA1 subregion. We found that the VPS4B expression was increased strongly after MCAO and reached the peak after 3 days. VPS4B mainly located in the cytoplasm of neurons, but not astrocytes and microglia. Moreover, there was a concomitant up-regulation of active caspase-3. In vitro studies indicated that the up-regulation of VPS4B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knock-down of VPS4B in cultured differentiated PC12 cells by siRNA showed that VPS4B promoted the expression of active caspase-3. Collectively, all these results and MTT assay suggested that the up-regulation of VPS4B played an important role in the pathophysiology after MCAO, and further research is needed to have a good understanding of its function and mechanism.  相似文献   

8.
Aim: The purpose of the present study was to explore the function and mechanism of tensin 1 (TNS1) in non-small cell lung cancer (NSCLC) progression.Methods: The expression of TNS1 in NSCLC cells and tissues was assessed by RT-PCR and Western blot. Besides, Kaplan–Meier survival analysis was recruited to explore the association between TNS1 and NSCLC. Cell growth was analyzed by MTT and flow cytometry assay, while cell metastasis was determined by wound healing and transwell assays. The targeting relationship between TNS1 and miR-152 was assessed by luciferase activity assays. And Western blot was employed to determine the expression of related proteins of Akt/mTOR/RhoA pathway.Results: TNS1 level was boosted in NSCLC cells and tissues, related to the prognosis of NSCLC patients. Furthermore, it was proved that TNS1 promoted the growth and metastasis of NSCLC cells via Akt/mTOR/RhoA pathway. And miR-152 targeted TNS1 to affect the progression of NSCLC.Conclusion: miR-152/TNS1 axis inhibits the progression of NSCLC by Akt/mTOR/RhoA pathway.  相似文献   

9.

Background

Numerous studies have shown that Id-1 (Inhibitor of differentiation 1) is upregulated in several cancers and associated with tumor malignant characters. However, the clinical significance and biological role of Id-1 in non-small cell lung cancer (NSCLC) remains unclear.

Methods

We used RT-PCR, Western blot and Immunohistochemistry to measure Id-1 expression in NSCLC tissues and matched adjacent noncancerous tissues. The expression pattern of Id-1 in NSCLC tissues was determined by scoring system of immunohistochemical analysis. The Kaplan-Meier method was used to calculate the survival curve, and log-rank test to determine statistical significance. The Id-1 gene was overexpressed or downreuglated with Lentiviral vectors in NSCLC cells. And, the migration ability of NSCLC cells was tested in a Transwell Boyden Chamber.

Results

We found that Id-1 is generally expressed higher in NSCLC tissues compared with matched adjacent noncancerous tissues. We also found that high Id-1 expression in tumor tissues is significantly correlated with tumor progression and poor survival in NSCLC patients. Furthermore, our experimental data revealed that knockdown of Id-1 significantly suppressed the proliferation, migration and invasion of NSCLC cells, whereas ectopic expression of Id-1 promoted the malignant phenotype of NSCLC cells. Mechanistic study showed that NF-κB signaling pathway contributed to the effects of Id-1 in NSCLC cells. Moreover, blocking the NF-κB pathway significantly inhibited the tumor-promoting actions of Id-1 in NSCLC cells.

Conclusions

We identified a tumorigenic role of Id-1 in NSCLC and provided a novel therapeutic target for NSCLC patients.
  相似文献   

10.
The intrinsic apoptosis apparatus plays a significant role in generating and amplifying cell death signals. In this study we examined whether there are differences in the expression of its components and in its functioning in non-small cell lung carcinoma (NSCLC) and the lung. We show that NSCLC cell lines express Apaf-1 and procaspase-9 and -3 proteins and that the expression of Apaf-1 and procaspase-3, but not of procaspase-9 and -7, is frequently up-regulated in NSCLC tissues as compared to the lung. NSCLC tissues and lungs and some NSCLC cell lines expressed also caspase-9S(b) and displayed a high caspase-9S(b)/procaspase-9 expression ratio. Procaspase-3 from NSCLCs and lungs was readily processed to caspase-3 by granzyme B or caspase-8, and the granzyme B-generated caspase-3-like activity was significantly higher in tumor tissues and cells than in lungs. By contrast, cytochrome c plus dATP could induce a significant increase of caspase-3-like activity in cytosol only in some NSCLC cell lines and in subsets of studied NSCLC tissues and lungs, while procaspase-3 and -7 were detectably processed only in NSCLC tissues which showed a high (cytochrome c+dATP)-induced caspase-3-like activity. Taken together, the present study provides evidence that the expression of Apaf-1 and procaspase-3 is up-regulated in NSCLCs and indicates that the tumors have a capability to suppress the apoptosome-driven caspase activation in their cytosol.  相似文献   

11.
Wang  Lei  Zeng  Cimei  Chen  Zhongren  Qi  Jianxu  Huang  Sini  Liang  Haimei  Huang  Shiren  Ou  Zongxing 《Molecular and cellular biochemistry》2022,477(3):743-757

Non-small cell lung cancer remains the leading cause of cancer-related death worldwide. Circular RNA plays vital roles in NSCLC progression. This study is designed to reveal the role of circ_0025039 in NSCLC cell malignancy. The RNA expression of circ_0025039, microRNA-636 (miR-636), and coronin 1C was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot analysis or immunohistochemistry assay. Cell proliferation, migration, invasion, tube formation ability, sphere formation capacity, and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine, transwell assay, tube formation assay, sphere formation assay, and flow cytometry analysis, respectively. Mouse model assay was conducted to reveal the effect of circ_0025039 silencing on tumor formation in vivo. The interaction between miR-636 and circ_0025039 or CORO1C was identified through dual-luciferase reporter and RNA pull-down assays. The expression of circ_0025039 and CORO1C was significantly increased, while miR-636 was decreased in NSCLC tissues and cells compared with controls. Circ_0025039 depletion repressed NSCLC cell proliferation, migration, invasion, tube-forming capacity, and sphere formation ability, but induced cell apoptosis. The neoplasm formation was repressed after circ_0025039 silencing. Additionally, circ_0025039 acted as a sponge for miR-636, which was found to target CORO1C. Importantly, the contribution of circ_0025039 to NSCLC progression was mediated by miR-636/CORO1C axis. Circ_0025039 silencing repressed NSCLC malignant progression by reducing CORO1C expression through miR-636, showing the possibility of circ_0025039 as a therapeutic target for NSCLC.

  相似文献   

12.
目的:探讨METTL3在非小细胞肺癌中的表达及作用,并探讨其可能的机制。方法:通过慢病毒转染,在HCC827细胞中过表达和敲除METTL3,并通过免疫印迹验证METTL3蛋白表达。免疫印迹检测HCC827细胞中生长抑制物家族成5(Methyltransferase Like 3,甲基转移酶3)调控ING5(Inhibitor Of Growth Family Member 5,METTL3)。使用基因表达交互分析(Gene Expression Profiling Interactive Analysis,GEPIA)探究了METTL3和ING5在非小细胞肺癌组织和正常组织中的表达相关性。用CCK-8法检测METTL3和ING5表达对非小细胞肺癌细胞增殖的影响。使用KM-plotter验证METTL3、ING5的表达与非小细胞肺癌的总生存期(OS)、进展后生存期(PPS)和无进展生存期(PFS)之间的相关性。结果:免疫印迹结果显示,在HCC827细胞中METTL3过表达上调了ING5蛋白的表达,而METTL3表达下调了ING5蛋白的表达。GEPIA数据库分析显示METTL3在非小细胞肺癌中的表达明显低于正常组织(P<0.05)。CCK-8检测结果显示,与对照组相比METTL3缺失促进了HCC827细胞的增殖能力,而METTL3过表达显著抑制了HCC827细胞的增殖能力。此外,METTL3通过ING5调控非小细胞肺癌细胞的增殖能力。KM-plotter分析显示METTL3、ING5 m RNA的表达与非小细胞肺癌患者的生存有较好的预后关系。结论:METTL3在非小细胞肺癌低表达,并通过调控ING5的表达在非小细胞肺癌的发生进展中发挥重要地抑癌基因作用。  相似文献   

13.
14.
15.
Aberrant expression of microRNA-146a (miR-146a) has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC) has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292). miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib) and a monoclonal antibody (cetuximab). These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation), but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE) lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (P<0.05). The patients with high miR-146a expression in their tumors showed longer progression-free survival (25.6 weeks in miR-146a high patients vs. 4.8 weeks in miR-146a low patients, P<0.05). miR-146a is therefore a strong candidate prognostic biomarker in NSCLC. Thus inducing miR-146a might be a therapeutic strategy for NSCLC.  相似文献   

16.
《Genomics》2022,114(2):110294
Circular RNA (circRNA) plays vital roles in diverse cancer progression, including non-small cell lung cancer (NSCLC). Herein, the role of circ_0004015 in regulating the sensitivity of NSCLC to cisplatin (DDP) is revealed. The RNA expression of circ_0004015, microRNA-198 (miR-198) and kruppel like factor 8 (KLF8) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. The half maximal inhibitory concentration of DDP and cell proliferation were determined by cell counting kit-8 assay. Cell colony formation ability, migration, invasion and apoptosis were investigated by colony-forming assay, transwell assay and flow cytometry analysis, respectively. The effect of circ_0004015 knockdown on DDP sensitivity in vivo was demonstrated by mouse model assay. The interactions among circ_0004015, miR-198 and KLF8 were predicted by bioinformatics methods, and identified by mechanism assays. The expression of circ_0004015 and KLF8 was apparently upregulated, while miR-198 expression was downregulated in DDP-resistant NSCLC tissues and cells compared with control groups. Additionally, circ_0004015 silencing repressed DDP resistance, cell proliferation, migration and invasion, but induced cell apoptosis in DDP-resistant NSCLC cells. Circ_0004015 knockdown promoted the effect of DDP on tumor formation in vivo. Also, miR-198 inhibitors attenuated circ_0004015 depletion-mediated action though associating with circ_0004015. MiR-198 regulated DDP sensitivity and NSCLC progression by targeting KLF8. Furthermore, circ_0004015 modulated KLF8 expression through interaction with miR-198. Circ_0004015 conferred DDP resistance and promoted NSCLC progression by miR-198/KLF8 pathway, proving a potential target for studying DDP-mediated treatment of NSCLC.  相似文献   

17.
18.

Background

Lung cancer is the number one cause of cancer-related deaths in the United States and worldwide. The complex protein changes and/or signature of protein expression in lung cancer, particularly in non-small cell lung cancer (NSCLC) has not been well defined. Although several studies have investigated the protein profile in lung cancers, the knowledge is far from complete. Among early studies, mucin5B (MUC5B) has been suggested to play an important role in the tumor progression. MUC5B is the major gel-forming mucin in the airway. In this study, we investigated the overall protein profile and MUC5B expression in lung adenocarcinomas, the most common type of NSCLCs.

Methods

Lung adenocarcinoma tissue in formalin-fixed paraffin-embedded (FFPE) blocks was collected and microdissected. Peptides from 8 tumors and 8 tumor-matched normal lung tissue were extracted and labeled with 8-channel iTRAQ reagents. The labeled peptides were identified and quantified by LC-MS/MS using an LTQ Orbitrap Velos mass spectrometer. MUC5B expression identified by iTRAQ labeling was further validated using immunohistochemistry (IHC) on tumor tissue microarray (TMA).

Results

A total of 1288 peptides from 210 proteins were identified and quantified in tumor tissues. Twenty-two proteins showed a greater than 1.5-fold differences between tumor and tumor-matched normal lung tissues. Fifteen proteins, including MUC5B, showed significant changes in tumor tissues. The aberrant expression of MUC5B was further identified in 71.1% of lung adenocarcinomas in the TMA.

Discussions

A subset of tumor-associated proteins was differentially expressed in lung adenocarcinomas. The differential expression of MUC5B in lung adenocarcinomas suggests its role as a potential biomarker in the detection of adenocarcinomas.  相似文献   

19.
已知mir-615-5p可抑制癌细胞的增殖,然而其具体分子机制尚不明确。本研究证明,mir-615-5p通过负调节癌基因TRAF4,从而抑制NSCLC细胞的增殖。运用实时定量PCR检测NSCLC患者癌组织和癌旁正常组织、正常人肺支气管上皮细胞系HBE和3种人源NSCLC细胞系中mir-615-5p的表达,发现与正常的组织和细胞相比,mir-615-5p在NSCLC癌组织和癌细胞中表达水平显著降低;运用Western印迹检测HBE细胞和NSCLC细胞系中TRAF4蛋白的表达,发现TRAF4在NSCLC细胞中表达显著升高;MTT和CCK 8分析结果显示,转染mir-615-5p mimic 可显著降低NSCLC细胞的增殖能力;生物学信息分析和萤光素酶报告基因检测结果显示,mir-615-5p可靶定结合TRAF4 mRNA,并下调TRAF4蛋白的水平;pcDNA-TRAF4转染后细胞增殖检测结果显示,过表达TRAF4能够消除mir-615-5p引起的细胞增殖抑制作用。综上所述,mir-615-5p通过靶定结合癌基因TRAF4的mRNA,下调TRAF4蛋白的水平,从而抑制NSCLC细胞的增殖。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号