首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiplicity of aspartate transport in thin wastewater biofilms.   总被引:3,自引:3,他引:0       下载免费PDF全文
This research documents the multiplicity of L-aspartate transport in thin wastewater biofilms. A Line-weaver-Burk analysis of incorporation produced a curvilinear plot (concave down) that suggested active transport by two distinct systems (1 and 2). The inactivation of system 2 with AsO4 or osmotic shock resolved system 1, which was a high-affinity, low-capacity system with an apparent Kt (Michaelis-Menten constant) of 4.3 microM (AsO4) or 4.6 microM (osmotic shock). The inactivation of system 1 with dinitrophenol resolved system 2, which was a low-affinity, high-capacity system with an apparent Kt of 116.7 microM. System 1 was more specific for aspartate than system 2 in the presence of aspartate analogs. Sodium had no discernible effect on the incorporation velocities by either system. These results indicate that system 1 is a membrane-bound proton symport coupled to the proton gradient component of the proton motive force and that system 2 is a binding protein-mediated system coupled to phosphate bond energy. Analyses of diffusional limitations on the derived transport constants indicated that internal resistances were present but that the apparent constants were close to the intrinsic values, especially for system 1. Metabolic inactivation of the biofilm with dinitrophenol and AsO4 did not completely inactivate aspartate incorporation, which indicated that some simple adsorption of the aspartate anion by the biofilm had occurred. These results show that aspartate is transported by wastewater biofilm bacteria via systems with different affinities, specificities, and mechanisms of energy coupling.  相似文献   

2.
This research documents an effect of reactor turbulence on the ability of gram-negative wastewater biofilm bacteria to actively transport l-aspartate via a binding-protein-mediated transport system. Biofilms which were not preadapted to turbulence and which possessed two separate and distinct aspartate transport systems (systems 1 and 2) were subjected to a turbulent flow condition in a hydrodynamically defined closed-loop reactor system. A shear stress treatment of 3.1 N . m for 10 min at a turbulent Reynolds number (Re = 11,297) inactivated the low-affinity, high-capacity binding-protein-mediated transport system (system 2) and resolved the high-affinity, low-capacity membrane-bound proton symport system (system 1). The K(t) and V(max) values for the resolved system were statistically similar to K(t) and V(max) values for system 1 when system 2 was inactivated either by osmotic shock or arsenate, two treatments which are known to inactivate binding-protein-mediated transport systems. We hypothesize that shear stress disrupts system 2 by deforming the outer membranes of the firmly adhered gram-negative bacteria.  相似文献   

3.
Amino acid transport was studied in membrane vesicles of the thermophilic anaerobic bacterium Clostridium fervidus. Neutral, acidic, and basic as well as aromatic amino acids were transported at 40 degrees C upon the imposition of an artificial membrane potential (delta psi) and a chemical gradient of sodium ions (delta microNa+). The presence of sodium ions was essential for the uptake of amino acids, and imposition of a chemical gradient of sodium ions alone was sufficient to drive amino acid uptake, indicating that amino acids are symported with sodium ions instead of with protons. Lithium ions, but no other cations tested, could replace sodium ions in serine transport. The transient character of artificial membrane potentials, especially at higher temperatures, severely limits their applicability for more detailed studies of a specific transport system. To obtain a constant proton motive force, the thermostable and thermoactive primary proton pump cytochrome c oxidase from Bacillus stearothermophilus was incorporated into membrane vesicles of C. fervidus. Serine transport could be driven by a membrane potential generated by the proton pump. Interconversion of the pH gradient into a sodium gradient by the ionophore monensin stimulated serine uptake. The serine carrier had a high affinity for serine (Kt = 10 microM) and a low affinity for sodium ions (apparent Kt = 2.5 mM). The mechanistic Na+-serine stoichiometry was determined to be 1:1 from the steady-state levels of the proton motive force, sodium gradient, and serine uptake. A 1:1 stoichiometry was also found for Na+-glutamate transport, and uptake of glutamate appeared to be an electroneutral process.  相似文献   

4.
Light-induced proton translocation coupled to sulfide-dependent electron transport has been studied in isolated thylakoids of the cyanobacterium Oscillatoria limnetica. The thylakoids are obtained by osmotic shock of washed spheroplasts, prepared with glycine-betaine as the osmotic stabilizer. 13C NMR studies suggests that betaine is the major osmoregulator in O. limnetica. Thylakoid preparations obtained from both sulfide-induced anoxygenic cells and noninduced oxygenic cells are capable of proton pumping coupled to phenazinemethosulfate-mediated cyclic electron flow. However, only in the induced thylakoids can sulfide-dependent proton gradient (delta pH) formation be measured, using either NADP or methyl viologen as the terminal acceptor. Sulfide-dependent delta pH formation correlates with a high-affinity electron donation site (apparent Km 44 microM at pH 7.9). This site is not lost upon washing of the thylakoids. In addition, both sulfide-dependent electron transport and delta pH formation are sensitive to inhibitors of the cytochrome b6f complex such as 2-n-nonyl-4-hydroxyquinoline-N-oxide, 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol, or stigmatellin. Sulfide-dependent NADP photoreduction of low affinity (which does not saturate by as much as 7 mM sulfide) is detected in both induced and noninduced thylakoids, but this activity is insensitive to the inhibitors and is not coupled to proton transport. It is suggested that the adaptation of O. limnetica to anoxygenic photosynthesis involves the induction of a thylakoid factor(s) which creates a high-affinity site for sulfide, and the transfer of its electrons via the cytochrome b6f complex, coupled to proton translocation.  相似文献   

5.
Choroid plexi from the lateral ventricles of rabbits, cats, and dogfish (Mustelus canis) were used to characterize the prostaglandin (PG) uptake process and to establish its kinetic parameters and substrate specificity. The apparent Kt for PGF2 alpha transport by the rabbit choroid plexus was 20 microM; the Jmax was 27 nmol g-1 min-1. The Ki of inhibition of PGF2 alpha transport by PGE2 was 20 microM; the Jmax of PGF2 alpha transport was unaltered by PGE2. A concentration of p-aminohippuric acid of up to 1 mM did not appreciably affect the Kt or the Jmax of PGF2 alpha transport. The rate of PGF2 alpha accumulation by rabbit choroid plexus was reduced by incubation at 4 degrees C, under anaerobic conditions, in the absence of sodium or in the presence of ouabain, probenecid, or bromcresol green. The choroid plexi of all three species also accumulated thromboxane B2, PGI2, and 6-keto-PGF1 alpha, suggesting that most, if not all, eicosanoids are substrates for this transport system. It is concluded that the choroid plexus transport system satisfies all the criteria of an active, energy-dependent transport system and that this system functions effectively at concentrations of eicosanoids present in the ventricular system under normal or pathological conditions. Hence, this transport system must make an important contribution to the pharmacokinetics of eicosanoids within the brain.  相似文献   

6.
The interaction of sarcoplasmic reticulum Ca(2+)-ATPase with the Mg.ATP analogues Rh(H2O)4ATP and Co(NH3)4ATP have been examined. Co(NH3)4ATP slowly inactivates Ca(2+)-ATPase in a first order process, with a rate constant of 1.13 x 10(-3) s-1 and an apparent inactivation constant, KI, of 32 mM. Rh(H2O)4ATP likewise inactivates sarcoplasmic reticulum Ca(2+)-ATPase, but the plot of reciprocal apparent inactivation rate constants versus 1/[Rh(H2O)4ATP] is biphasic. The chi-intercepts of this plot yield apparent inactivation constants for the inhibition of Ca(2+)-ATPase by Rh(H2O)4ATP of KI1 = 30 microM and KI2 = 221 microM. The corresponding values of k2, the maximal first-order rate constant for inhibition in these two phases, are 1.16 and 2.19 x 10(-4)s-1. Tridentate Rh(H2O)3ATP also inhibits Ca(2+)-ATPase, but only after much longer incubation times. Ca(2+)-ATPase inactivation is accompanied by incorporation of radioactivity from gamma-32P into an acid-precipitable enzyme. Both processes were dependent on the presence of Ca2+ ions and were quenched by excess ATP. The first-order rate constant for inactivation of Ca(2+)-dependent ATPase activity in this experiment was 2.19 x 10(-4)s-1, and the first-order rate constant for Ca(2+)-dependent E-P formation was 2.07 x 10(-4)s-1, in excellent agreement with the value for inactivation. A linear relationship is observed between ATPase inactivation and E-P formation. Moreover, atomic absorption analysis demonstrates that the phosphorylation of Ca(2+)-ATPase by Rh(H2O)4ATP is accompanied by incorporation and tight binding of rhodium, with a stoichiometry of one rhodium incorporated per ATPase molecule phosphorylated. The characteristics of ATPase inactivation and phosphorylation (i.e., Ca2+ dependence, ATP competition, agreement of rate constants, and stoichiometric rhodium incorporation) suggest that Rh(H2O)4ATP is binding to the catalytic nucleotide site on Ca(2+)-ATPase and producing a highly stable, phosphorylated intermediate.  相似文献   

7.
pH dependence of the Coxiella burnetii glutamate transport system.   总被引:10,自引:2,他引:8  
The transport of glutamate, apparently a primary energy source for Coxiella burnetii, has been examined. C. burnetii is shown to possess a pH-dependent active transport system for L-glutamate with an apparent Kt of 61.1 microM and Vmax of 8.33 pmol/s per mg at pH 3.5. Both L-glutamine and L-asparagine competitively inhibited transport of glutamate, but D-glutamate, L-aspartate, L-glutamate-gamma-methyl ester, methionine sulfoximine, or alpha-ketoglutarate did not compete. This transport system is both temperature and energy dependent. Uptake of glutamate is highly sensitive to uncouplers of oxidative phosphorylation such as 2,4-dinitrophenol and carbonyl cyanide-m-chlorophenyl hydrazone that decrease the proton motive force across the cytoplasmic membrane. ATPase inhibitors such as dicyclohexylcarbodiimide or metabolic poisons such as KCN, NaF, or arsenite were much less effective as inhibitors of glutamate transport. Uptake of glutamate did not appear to be coupled to Na+ symport as in Escherichia coli since no monovalent cation requirement could be demonstrated. Instead, the Vmax of glutamate transport showed good correlation with the transmembrane pH gradient (delta pH). From these results, we propose that L-glutamate transport by C. burnetii is energized via a proton motive force.  相似文献   

8.
The disulfide reducing agent, dithiothreitol (DTT) and the sulfhydryl-modifying reagents p-chloromercuribenzenesulfonic acid and N-ethylmaleimide (NEM) were employed to assess the role of disulfide and sulfhydryl groups in organic cation transport. The transport of N1-[3H]methylnicotinamide (NMN), a prototypic organic cation, was examined employing brush-border membrane vesicles isolated from the outer cortex of canine kidneys. DTT inhibited NMN transport reversibly with an IC50 of 250 microM/mg of protein. 5 mM NMN protected against DTT inactivation. The specificity of substrate protection was demonstrated by showing that D-glucose had no effect on the DTT inactivation of NMN transport and conversely that NMN had no effect on the DTT inactivation of D-glucose transport. Disulfide bonds reduced by DTT could be reoxidized by washing with excess buffer or by addition of 0.02% H2O2 thereby restoring NMN transport. p-Chloromercuribenzenesulfonic acid reversibly inactivated NMN transport with an IC50 of 25 microM/mg of protein. 5mM NMN protected against inactivation. NEM irreversibly inactivated transport with an IC50 of 250 microM/mg of protein. The rate of NMN inactivation by NEM followed pseudo-first order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the NEM concentration with a slope of 1.3. The data are consistent with a simple bimolecular reaction mechanism and imply that one molecule of NEM inactivates 1 sulfhydryl group/active transport unit. The presence of 5 mM NMN affected the rate of NEM (2.5 mM) inactivation: the t1/2 values for inactivation in the presence and absence of substrate were 7.3 and 2.0 min, respectively. The results demonstrate an essential requirement for disulfide and sulfhydryl groups.  相似文献   

9.
Klebsiella pneumoniae M5a1 has been shown to possess an inducible transport system for 4-hydroxyphenylacetate (4-HPA). This transport system has a Kt of 16.3 microM and a maximal velocity of 31.2 nmol/min (milligrams dry weight). The transport system has been inhibited by inhibitors of energy metabolism with a concomitant decrease in cellular ATP concentrations, and the 4-HPA binding activity has been detected in the crude shock extracts. All these observations indicate that 4-HPA uptake is an active transport which involves a periplasmic binding protein and it seems to be energized by phosphate bond energy.  相似文献   

10.
The effect of several sulfhydryl-modifying reagents (HgCl2, p-chloromercuribenzenesulfonic acid (PCMBS), N-ethylmaleimide) on the renal organic anion exchanger was studied. The transport of p-amino[3H]hippurate, a prototypic organic anion, was examined employing brush-border membrane vesicles isolated from the outer cortex of canine kidneys. HgCl2, PCMBS and N-ethylmaleimide inactivated p-aminohippurate transport with IC50 values of 38, 78 and 190 microM. The rate of p-aminohippurate inactivation by N-ethylmaleimide followed apparent pseudo-first-order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the N-ethylmaleimide concentration with a slope of 0.8. The data are consistent with a simple bimolecular reaction mechanism and imply that one molecule of N-ethylmaleimide inactivates one essential sulfhydryl group per active transport unit. Substrate (1 mM p-aminohippurate) affected the rate of the N-ethylmaleimide (1.3 mM) inactivation: the t1/2 values for inactivation in the presence and absence of p-aminohippurate were 7.4 and 3.7 min, respectively. The results demonstrate that there are essential sulfhydryl groups for organic anion transport in the brush-border membrane. Moreover, the ability of substrate to alter sulfhydryl reactivity suggests that the latter may play a dynamic role in the transport process.  相似文献   

11.
The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 microM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was isolated and purified. The protein binds L-glutamate (apparent Kd of 1.3 microM) and L-glutamine (Ki of 15 microM) with high affinity. The expression level of this binding protein is maximal at limiting concentrations of glutamine in the growth medium. The glutamate-binding protein restores the uptake of L-glutamate in spheroplasts. L-Aspartate is a strong competitive inhibitor of L-glutamate uptake (Ki of 3 microM) but competes only poorly with L-glutamate for binding to the binding protein (Ki of > 200 microM). The uptake of L-aspartate in R. sphaeroides also involves a binding protein which is distinct from the L-glutamate-binding protein. These data suggest that in R. sphaeroides, the L-glutamate- and L-aspartate-binding proteins interact with the same membrane transporter.  相似文献   

12.
The transport of P(i) was characterized in Acinetobacter johnsonii 210A, which is able to accumulate an excessive amount of phosphate as polyphosphate (polyP) under aerobic conditions. P(i) is taken up against a concentration gradient by energy-dependent, carrier-mediated processes. A. johnsonii 210A, grown under P(i) limitation, contains two uptake systems with Kt values of 0.7 +/- 0.2 microM and 9 +/- 1 microM. P(i) uptake via the high-affinity component is drastically reduced by N,N'-dicyclohexylcarbodiimide, an inhibitor of H(+)-ATPase, and by osmotic shock. Together with the presence of P(i)-binding activity in concentrated periplasmic protein fractions, these results suggest that the high-affinity transport system belongs to the group of ATP-driven, binding-protein-dependent transport systems. Induction of this transport system upon transfer of cells grown in the presence of excess P(i) to P(i)-free medium results in a 6- to 10-fold stimulation of the P(i) uptake rate. The constitutive low-affinity uptake system for P(i) is inhibited by uncouplers and can mediate counterflow of P(i), indicating its reversible, secondary nature. The presence of an inducible high-affinity uptake system for P(i) and the ability to decrease the free internal P(i) pool by forming polyP enable A. johnsonii 210A to reduce the P(i) concentration in the aerobic environment to micromolar levels. Under anaerobic conditions, polyP is degraded again and P(i) is released via the low-affinity secondary transport system.  相似文献   

13.
Y Deguchi  I Yamato    Y Anraku 《Journal of bacteriology》1989,171(3):1314-1319
Two genes encoding distinct glutamate carrier proteins of Escherichia coli B were cloned into an E. coli K-12 strain by using a cosmid vector, pHC79. One of them was the gltS gene coding for a glutamate carrier of an Na+-dependent, binding protein-independent, and glutamate-specific transport system. The content of the glutamate carrier was amplified about 25-fold in the cytoplasmic membranes from a gltS-amplified strain. The gltS gene was located in a 3.2-kilobase EcoRI-MluI fragment, and the gene product was identified as a membrane protein with an apparent Mr of 35,000 in a minicell system. A gene designated gltP was also cloned. The transport activity of the gltP system in cytoplasmic membrane vesicles from a gltP-amplified strain was driven by respiratory substrates and was independent of the concentrations of Na+, K+, and Li+. An uncoupler, carbonylcyanide m-chlorophenylhydrazone, completely inhibited the transport activities of both systems, whereas an ionophore, monensin, inhibited only that of the gltS system. The Kt value for glutamate was 11 microM in the gltP system and 3.5 microM in the gltS system. L-Aspartate inhibited the glutamate transport of the gltP system but not that of the gltS system. Aspartate was taken up actively by membrane vesicles from the gltP-amplified strain, although no aspartate uptake activity was detected in membrane vesicles from a wild-type E. coli strain. These results suggest that gltP is a structural gene for a carrier protein of an Na+-independent, binding protein-independent glutamate-aspartate transport system.  相似文献   

14.
The effect of N-ethylmaleimide (NEM), an irreversible sulfhydryl modifying reagent, on the transport of organic cations in the renal basolateral membrane was examined. The studies were conducted examining the exchange of [3H]tetraethylammonium (TEA) for unlabeled TEA in basolateral membrane vesicles isolated from the outer cortex of rabbit kidneys. NEM inactivated TEA transport in a dose-dependent fashion with an IC50 value of 260 microM. The rate of TEA transport inactivation followed apparent pseudo-first-order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the NEM concentration with a slope of 4.0. The data imply that inactivation involves the binding of at least four molecules of NEM per active transport unit. This is most consistent with the presence of four sulfhydryl groups at this site. The substrate TEA displayed a dose-dependent enhancement of NEM inactivation, with 50% enhancement occurring at 365 microM TEA. Another organic cation, N1-methylnicotinamide, known to share a common transport mechanism with the TEA/TEA exchanger is also capable of increasing the reactivity of sulfhydryl groups to NEM. These results demonstrate that there are essential sulfhydryl groups for organic cation transport in the basolateral membrane. In addition, the capability of organic cations to alter the susceptibility to sulfhydryl modification suggests that these groups may have a dynamic role in the transport process.  相似文献   

15.
Glycerol and other polyols are used as osmoprotectants by many organisms. Several yeasts and other fungi can take up glycerol by proton symport. To identify genes involved in active glycerol uptake in Saccharomyces cerevisiae we screened a deletion mutant collection comprising 321 genes encoding proteins with 6 or more predicted transmembrane domains for impaired growth on glycerol medium. Deletion of STL1, which encodes a member of the sugar transporter family, eliminates active glycerol transport. Stl1p is present in the plasma membrane in S. cerevisiae during conditions where glycerol symport is functional. Both the Stl1 protein and the active glycerol transport are subject to glucose-induced inactivation, following identical patterns. Furthermore, the Stl1 protein and the glycerol symporter activity are strongly but transiently induced when cells are subjected to osmotic shock. STL1 was heterologously expressed in Schizosaccharomyces pombe, a yeast that does not contain its own active glycerol transport system. In S. pombe, STL1 conferred the ability to take up glycerol against a concentration gradient in a proton motive force-dependent manner. We conclude that the glycerol proton symporter in S. cerevisiae is encoded by STL1.  相似文献   

16.
Myo-inositol transport system in Pseudomonas putida.   总被引:3,自引:3,他引:0       下载免费PDF全文
The kinetic features of the myo-inositol transport system in Pseudomonas putida are reported. The system is sensitive to osmotic shock, is not operative in membrane vesicles, and does not involved substrate phosphorylation. Line-weaver-Burk plots indicate the presence of two different systems, whose Kt are 5 micrometer and 0.43 mM and whose V max are 7.9 and 27 nml/mg per min, respectively. Transport activity of glucose-grown cells is very low. myo-Inositol-grown cells lose the high-affinity system upon osmotic shock; concentrated shock fluid possesses myo-inositol-binding activity. The system is very specific for the myo-configuration of the cyclitol.  相似文献   

17.
This study is aimed both at characterizing an ATPase activity in rat kidney equivalent to the proton pump described in bovine kidney medulla and at localizing this enzyme along the nephron. Membrane fractions isolated from kidney homogenates by differential and density gradient centrifugations were enriched 7-fold in ATPase activity sensitive to N-ethylmaleimide (NEM). These fractions also displayed ATP-dependent proton transport. ATPase activity and proton transport in vesicles had similar pharmacological properties as both were insensitive to vanadate and ouabain and had similar sensitivities toward NEM (apparent Ki = 20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 50 microM). Proton transport was dependent on chloride availability as chloride addition to the extravesicular medium stimulated proton transport in a dose-dependent fashion (apparent K 1/2 = 7 mM). NEM-sensitive ATPase activity displaying similar pharmacological properties as proton transport in vesicles was also found in single segments of nephron. It was insensitive to vanadate and ouabain, was inhibited by similar concentrations of NEM (apparent Ki = 15-20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 30 microM), and is therefore likely to be a proton pump. NEM-sensitive ATPase was localized in all the segments of the rat nephron; its activity was highest in proximal convoluted tubules; intermediate in proximal straight tubules, thick ascending limbs, and cortical collecting tubules; and lowest in outer medullary collecting tubules.  相似文献   

18.
The principal aim of the present study was to investigate the effects of variation in proton gradient and membrane potential on the transport of glycyl-L-glutamine (Gly-Gln) by renal brush border membrane vesicles. Under our conditions of transport assay, Gly-Gln was taken up by brush border membrane vesicles almost entirely as intact dipeptide. This uptake was mediated by two transporters shared by other dipeptides and characterized as the high affinity (Kt = 44.1 +/- 11.2 microM)/low capacity (Vmax = 0.41 +/- 0.03 nmol/mg protein/5 s) and low affinity (Kt = 2.62 +/- 0.50 mM)/high capacity (Vmax 4.04 +/- 0.80 nmol/mg protein/5 s) transporters. In the absence of a pH gradient, only the low affinity system was operational, but with a reduced transport capacity. Imposing a pH gradient of 1.6 pH units increased the Vmax of both transporters. Kinetic analysis of the rates of Gly-Gln uptake as a function of external pH revealed Hill coefficients of close or equal to 1, indicating that transporters contain only one binding site for the interaction with external H+. The effects of membrane potential on Gly-Gln uptake were investigated with valinomycin-induced K+ diffusion potentials. The velocity of the high affinity system but not of the low affinity system increased linearly with increasing inside-negative K+ diffusion potentials (p less than 0.01). The Kt of neither system was affected by alterations in either pH gradient or membrane potential. We conclude that (a) the high affinity transporter is far more sensitive to changes in proton gradient and membrane potential than the low affinity transporter and (b) in the presence of a pH gradient, transport of each dipeptide molecule requires cotransport of one hydrogen ion to serve as the driving force.  相似文献   

19.
The barrier function of the Escherichia coli outer membrane against low concentrations of maltose in strains missing the lambda receptor was partially overcome by treating the cells for 3 h with 25 mM Ca2+. Kinetic analysis of maltose-transport revealed a Ca2+-induced shift of the apparent Km of the system from about 100 microM in cells pretreated with Tris to about 15 microM in cells pretreated with Tris plus Ca2+. In contrast to maltose transport in untreated cells, that of Ca2+-treated lamB cells was inhibited by molecules with a high molecular weight, such as amylopectin (molecular weight, 20,000), and anti-maltose-binding protein antibodies. In addition, lysozyme was shown to attack Ca2+-treated cells in contrast to untreated cells. The Ca2+-induced permeability increase of the outer membrane allowed reconstitution of maltose transport in a mutant missing the maltose-binding protein with osmotic shock fluid containing the maltose-binding protein. Even though Ca2+-treatment allowed the entry of large molecules, the release of the periplasmic maltose-binding protein or alkaline phosphatase was negligible.  相似文献   

20.
Osmotic shock stimulates the translocation of the glucose transporter Glut 4 to plasma membrane by a tyrosine kinase signaling pathway involving Gab-1 (the Grb2-associated binder-1 protein). We show here that, in response to osmotic shock, Gab-1 acts as a docking protein for phospholipase Cgamma1, the p85 subunit of the phosphoinositide 3-kinase and Crk-II. It has been shown that the adapter Crk-II is constitutively associated with C3G, a GDP to GTP exchange factor for several small GTP-binding proteins. We found that inhibition of the activity of phosphoinositide 3-kinase or phospholipase C did not prevent the stimulation of glucose transport by osmotic shock, whereas inactivation of Rho proteins by Clostridium difficile toxin B severely inhibited glucose uptake. Among the Rho family members, overexpression of dominant-interfering TC10/T31N mutant inhibited osmotic shock-mediated Glut 4 translocation suggesting that TC10 is required for this process. Further, disruption of cortical actin integrity by latrunculin B or jasplakinolide severely impaired osmotic shock-induced glucose transport. In contrast, osmotic shock increased the amount of cortical actin associated with caveolin-enriched plasma membrane domains. These data provide the first evidence that activation of TC10 and remodeling of cortical actin, which could occur through the TC10 signaling, are required for osmotic shock-mediated Glut 4 translocation and glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号