首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The signal transduction adapter protein Disabled-2 (Dab2) is one of the two mammalian orthologs of the Drosophila Disabled. The brain-specific Disabled-1 (Dab1) functions in positional organization of brain cells during development. Dab2 is widely distributed and is highly expressed in many epithelial cell types. The dab2 gene was interrupted by in-frame insertion of beta-galactosidase (LacZ) in embryonic stem cells and transgenic mice were produced. Dab2 expression was first observed in the primitive endoderm at E4.5, immediately following implantation. The homozygous Dab2-deficient mutant is embryonic lethal (earlier than E6.5) due to defective cell positioning and structure formation of the visceral endoderm. In E5.5 dab2 (-/-) conceptus, visceral endoderm-like cells are present in the deformed primitive egg cylinder; however, the visceral endoderm cells are not organized, the cells of the epiblast have not expanded, and the proamniotic cavity fails to form. Disorganization of the visceral endodermal layer is evident, as cells with positive visceral endoderm markers are scattered throughout the dab2 (-/-) conceptus. Only degenerated remains were observed at E6.5 for dab2 (-/-) embryos, and by E7.5, the defective embryos were completely reabsorbed. In blastocyst in vitro culture, initially cells with characteristics of endoderm, trophectoderm, and inner cell mass were observed in the outgrowth of the hatched dab2 (-/-) blastocysts. However, the dab2 (-/-) endodermal cells are much more dispersed and disorganized than those from wild-type blastocysts, the inner cell mass fails to expand, and the outgrowth degenerates by day 7. Thus, Dab2 is required for visceral endodermal cell organization during early mouse development. The absence of an organized visceral endoderm in Dab2-deficient conceptus leads to the growth failure of the inner cell mass. We suggest that Dab2 functions in a signal pathway to regulate endodermal cell organization using endocytosis of ligands from the blastocoel cavity as a positioning cue.  相似文献   

2.
Transforming growth factor beta (TGFbeta) induces an epithelial to mesenchymal transition (EMT) during both physiological and pathological processes; however, the mechanism underlying this transition is not fully elucidated. Here, we have demonstrated that TGFbeta induces the expression of the adaptor molecule disabled-2 (Dab2) concomitant with the promotion of EMT. We show that TGFbeta induces a transient accumulation of Dab2 to the membrane and increases Dab2 binding to beta1 integrin. Furthermore, small interfering RNA (siRNA)-mediated silencing of Dab2 expression in mouse mammary gland epithelial cells results in inhibition of integrin activation, shown by a decrease of both TGFbeta-induced focal adhesion kinase phosphorylation and cellular adherence, leading to apoptosis and inhibition of EMT. Forced re-expression of human Dab2, not targeted by the mouse siRNA sequence, rescues cells from apoptosis and restores TGFbeta-mediated integrin activation and EMT. These results are confirmed in the F9 teratocarcinoma cell line, a model for retinoic acid-induced visceral endoderm differentiation in which we demonstrate that ablation of retinoic acid-induced Dab2 expression levels, by stable siRNA silencing of Dab2, blocks visceral endoderm differentiation. Our findings indicate that Dab2 plays an important regulatory role during cellular differentiation and that induction of differentiation in the absence of Dab2 expression commits the cell to apoptosis.  相似文献   

3.
4.
Disabled-1 (Dab1) is an essential adaptor protein that functions in the Reelin signaling pathway and is required for the regulation of neuronal migration during embryonic development. Dab1 interacts with NPXY motifs in the cytoplasmic tails of the lipoprotein receptors ApoER2 and very low density lipoprotein receptor through an amino-terminal phosphotyrosine binding (PTB) domain. Binding of Reelin to these receptors leads to tyrosine phosphorylation of Dab1 and the initiation of a signaling cascade that results in remodeling of the cytoskeleton. Structural and biochemical studies of the Dab1 PTB domain have demonstrated that this domain binds to both the NPXY peptide motif in the lipoprotein receptor tails as well as to the head group of phosphoinositide 4,5-P2 through energetically independent mechanisms. Here we have investigated how phosphoinositide binding by the Dab1 PTB domain influences Reelin signal transduction. Our findings in cultured primary neurons that have been transduced with lentiviral constructs expressing mutant Dab1 forms reveal that phosphoinositide binding by the Dab1 PTB domain is necessary for proper membrane localization of Dab1 and for effective transduction of a Reelin signal.  相似文献   

5.
An antigenic substance was isolated from rat visceral yolk-sac endoderm of the 18th-20th days of gestation by extraction with the nonionic detergent Nonidet P-40, Sephacryl S-300 gel filtration, and Ricinus communis agglutinin affinity chromatography. The rabbit antiserum directed against this antigenic substance when injected into pregnant rats during the period of organogenesis caused abnormal embryonic development, fetal growth retardation, and embryonic death. Ouchterlony gel diffusion analysis demonstrated that the antiserum formed one immunoprecipitin band against the crude detergent extract and a complete identity between the present visceral yolk-sac antigen and the renal glycoprotein antigen previously isolated (C. C. K. Leung, (1982) J. Exp. Med. 156, 372-384). The antigen eluted from the antibody affinity column appeared to consist of two major peptides of 60 and 30 kDa when analyzed by SDS-polyacrylamide gel electrophoresis. Indirect immunofluorescent and immunoperoxidase localization studies at the light microscopic level demonstrated that both rat renal proximal tubule and embryonic visceral yolk-sac endoderm at various gestational stages (including the organogenetic period) shared the same antigen. Indirect immunoperoxidase localization studies at the electron microscopic level demonstrated that the antigen was a part of (or associated with) the microvillar membrane and membrane invaginations at the base of the microvilli of the renal proximal tubule and visceral yolk-sac endoderm. In vivo immunoperoxidase localization studies demonstrated that the teratogenic antibodies localized within the large phagolysosomes and the apical vesicles of the visceral yolk-sac endoderm. It is postulated that visceral yolk-sac pathology was induced by the antibodies.  相似文献   

6.
The heterotrimeric basement membrane protein laminin-111 is essential for early mouse embryogenesis. Its β1 and γ1 chains are crucial for endoderm differentiation and for the formation of basement membranes, whereas α1 chain null mice only lack the extraembryonic Reichert’s membrane. Nevertheless, mice deficient in the cell-binding α1 globular domains 4-5 (LG4-5) have a more severe phenotype than animals devoid of the whole α1 chain, as these domains are required for the formation of a polarized ectoderm. However, the influence of the α1LG4-5 domains on endoderm differentiation is unclear. We have used microarray analysis to compare the expression profiles of normal and α1LG4-5-deficient embryoid bodies and show that genes encoding secreted plasma proteins and proteins involved in endocytosis are reduced in α1LG4-5-deficient embryoid bodies, indicating incomplete differentiation of the visceral endoderm. Moreover, mice lacking α1LG4-5 display endoderm disorganization and a defective expression of the endoderm marker Dab2. We hypothesize that α1LG4-5 domains provide an autocrine signal necessary for the complete differentiation of a functional visceral endoderm and vital signals for the polarization of the epiblast.  相似文献   

7.
8.
Mouse embryos lacking the polycomb group gene member Yin-Yang1 (YY1) die during the peri-implantation stage. To assess the post-gastrulation role of YY1, a conditional knock-out (cKO) strategy was used to delete YY1 from the visceral endoderm of the yolk sac and the definitive endoderm of the embryo. cKO embryos display profound yolk sac defects at 9.5 days post coitum (dpc), including disrupted angiogenesis in mesoderm derivatives and altered epithelial characteristics in the visceral endoderm. Significant changes in both cell death and proliferation were confined to the YY1-expressing yolk sac mesoderm indicating that loss of YY1 in the visceral endoderm causes defects in the adjacent yolk sac mesoderm. Production of Vascular Endothelial Growth Factor A (VEGFA) by the visceral endoderm is essential for normal growth and development of the yolk sac vasculature. Reduced levels of VEGFA are observed in the cKO yolk sac, suggesting a cause for the angiogenesis defects. Ex vivo culture with exogenous VEGF not only rescued angiogenesis and apoptosis in the cKO yolk sac mesoderm, but also restored the epithelial defects observed in the cKO visceral endoderm. Intriguingly, blocking the activity of the mesoderm-localized VEGF receptor, FLK1, recapitulates both the mesoderm and visceral endoderm defects observed in the cKO yolk sac. Taken together, these results demonstrate that YY1 is responsible for maintaining VEGF in the developing visceral endoderm and that a VEGF-responsive paracrine signal, originating in the yolk sac mesoderm, is required to promote normal visceral endoderm development.  相似文献   

9.
In early postimplantation mouse development, transferrin synthesis appears to be a marker of visceral endoderm cell types. Transferrin was identified using immunoperoxidase staining, in the proximal (visceral) endoderm of the sixth-day egg cylinder, in some tissues at later stages, and in the visceral yolk sac (VYS) at all stages examined. Since the location of a plasma protein does not necessarily indicate its site of synthesis, the incorporation of labeled amino acids into transferrin was studied. Synthesis could be detected in egg cylinders on the seventh day of gestation onwards and in the VYS at all stages. However, although endoderm was the likely tissue source, its ability to synthesize transferrin after its isolation from the embryo was either much reduced or absent. The data are suggestive of a modulating influence by mesoderm and other cell types on transferrin synthesis in visceral endoderm cells. Three types of endoderm-like cells which are produced by teratocarcinoma embryonal carcinoma (EC) cells were analyzed for transferrin synthesis to assess possible parallels with the embryo. Embryoid bodies from PSA1 EC cells contained some outer endoderm cells which stained for transferrin and others which did not. The endoderm line PSA5E but not PYS-2 synthesized transferrin. The third type of endoderm-like cell (END cells) synthesized very little (OC15S1) or no (PC13 clone 5) transferrin. The conclusion that PSA5E, OC15 END, and some differentiated PSA1 cells have visceral endoderm-like character while PYS-2 reflects parietal endoderm phenotype is in agreement with published data.  相似文献   

10.
The signaling pathway for Nodal, a ligand of the TGFβ superfamily, plays a central role in regulating the differentiation and/or maintenance of stem cell types that can be derived from the peri-implantation mouse embryo. Extra-embryonic endoderm stem (XEN) cells resemble the primitive endoderm of the blastocyst, which normally gives rise to the parietal and the visceral endoderm in vivo, but XEN cells do not contribute efficiently to the visceral endoderm in chimeric embryos. We have found that XEN cells treated with Nodal or Cripto (Tdgf1), an EGF-CFC co-receptor for Nodal, display upregulation of markers for visceral endoderm as well as anterior visceral endoderm (AVE), and can contribute to visceral endoderm and AVE in chimeric embryos. In culture, XEN cells do not express Cripto, but do express the related EGF-CFC co-receptor Cryptic (Cfc1), and require Cryptic for Nodal signaling. Notably, the response to Nodal is inhibited by the Alk4/Alk5/Alk7 inhibitor SB431542, but the response to Cripto is unaffected, suggesting that the activity of Cripto is at least partially independent of type I receptor kinase activity. Gene set enrichment analysis of genome-wide expression signatures generated from XEN cells under these treatment conditions confirmed the differing responses of Nodal- and Cripto-treated XEN cells to SB431542. Our findings define distinct pathways for Nodal and Cripto in the differentiation of visceral endoderm and AVE from XEN cells and provide new insights into the specification of these cell types in vivo.  相似文献   

11.
Selenoprotein P (Sepp1) contains most of the selenium in blood plasma, and it is utilized by the kidney, brain, and testis as a selenium source for selenoprotein synthesis. We recently demonstrated that apolipoprotein E receptor-2 (ApoER2) is required for Sepp1 uptake by the testis and that deletion of ApoER2 reduces testis and brain, but not kidney, selenium levels. This study examined the kidney Sepp1 uptake pathway. Immunolocalization experiments demonstrated that Sepp1 passed into the glomerular filtrate and was specifically taken up by proximal tubule epithelial cells. Neither the C terminus selenocysteine-rich domain of Sepp1 nor ApoER2 was required for Sepp1 uptake by proximal tubules. Tissue ligand binding assays using cryosections of Sepp1-/- kidneys revealed that the proximal tubule epithelium contained Sepp1-binding sites that were blocked by the receptor-associated protein, RAP, an inhibitor of lipoprotein receptor-ligand interactions. Ligand blotting assays of kidney membrane preparations fractionated by SDS-PAGE revealed that Sepp1 binds megalin, a lipoprotein receptor localized to the proximal tubule epithelium. Immunolocalization analyses confirmed the in vivo co-localization of Sepp1 and megalin in wild type kidneys and demonstrated the absence of proximal tubule Sepp1 uptake in megalin null mice. These results demonstrate that kidney selenium homeostasis is mediated by a megalin-dependent Sepp1 uptake pathway in the proximal tubule.  相似文献   

12.
BACKGROUND: The extracellular protein Reln controls neuronal migrations in parts of the cortex, hippocampus and cerebellum. In vivo, absence of Reln correlates with up-regulation of the docking protein Dab1 and decreased Dab1 tyrosine phosphorylation. Loss of the Reln receptor proteins, apolipoprotein receptor 2 and very low density lipoprotein receptor, results in a Reln-like phenotype accompanied by increased Dab1 protein expression. Complete loss of Dab1, however, recapitulates the Reln phenotype. RESULTS: To determine whether Dab1 tyrosine phosphorylation affects Dab1 protein expression and positioning of embryonic neurons, we have identified Dab1 tyrosine phosphorylation sites. We then generated mice in which the Dab1 protein had all the potential tyrosine phosphorylation sites mutated. This mutant protein is not tyrosine phosphorylated during brain development and is not upregulated to the extent observed in the Reln or the apoER2 and VLDLR receptor mutants. Animals expressing the non-phosphorylated Dab1 protein have a phenotype similar to the dab1-null mutant. CONCLUSIONS: Dab1 is downregulated by the Reln signal in neurons in the absence of tyrosine phosphorylation. Dab1 tyrosine phosphorylation sites and not downregulation of Dab1 protein are required for Reln signaling.  相似文献   

13.
Defining the actions of transforming growth factor beta in reproduction   总被引:16,自引:0,他引:16  
Members of the transforming growth factor beta (TGFbeta) family are pleiotropic cytokines with key roles in tissue morphogenesis and growth. TGFbeta1, TGFbeta2 and TGFbeta3 are abundant in mammalian reproductive tissues, where development and cyclic remodelling continue in post-natal and adult life. Potential roles for TGFbeta have been identified in gonad and secondary sex organ development, spermatogenesis and ovarian function, immunoregulation of pregnancy, embryo implantation and placental development. However, better tools must now be employed to map more precisely essential functions and the regulatory networks governing their activity. Gene ablation and transgenic models are expected to provide novel insights into distinct physiological activities for each TGFbeta isoform in normal reproductive function and reproductive pathologies. It is also necessary to consider the mechanisms controlling TGFbeta activation from latent precursor forms, and receptor and binding protein expression. Smad intracellular signalling circuitry and modulation by environmental stimuli through cross-talk with other signal transduction pathways will further constrain TGFbeta action. This review examines existing evidence for TGFbeta1, TGFbeta2 and TGFbeta3 regulation of male and female reproductive biology, and highlights prospects for future research.  相似文献   

14.
Myosin VI, an actin-based motor protein, and Disabled 2 (Dab2), a molecule involved in endocytosis and cell signalling, have been found to bind together using yeast and mammalian two-hybrid screens. In polarised epithelial cells, myosin VI is known to be associated with apical clathrin-coated vesicles and is believed to move them towards the minus end of actin filaments, away from the plasma membrane and into the cell. Dab2 belongs to a group of signal transduction proteins that bind in vitro to the FXNPXY sequence found in the cytosolic tails of members of the low-density lipoprotein receptor family. The central region of Dab2, containing two DPF motifs, binds to the clathrin adaptor protein AP-2, whereas a C-terminal region contains the binding site for myosin VI. This site is conserved in Dab1, the neuronal counterpart of Dab2. The interaction between Dab2 and myosin VI was confirmed by in vitro binding assays and coimmunoprecipitation and by their colocalisation in clathrin-coated pits/vesicles concentrated at the apical domain of polarised cells. These results suggest that the myosin VI–Dab2 interaction may be one link between the actin cytoskeleton and receptors undergoing endocytosis.  相似文献   

15.
Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.  相似文献   

16.
The endoderm plays an inductive role in the formation of cardiomyocytes in many vertebrates. Here, we provide further evidence for this in the mouse and demonstrate enhanced cardiomyogenesis in mouse embryonic stem cells cultured in the presence of native visceral endoderm. Isolated mesoderm from late-primitive streak stage mouse embryos that still have an open proamniotic canal had a reduced capacity to form cardiomyocytes after 4 days in culture compared with mesoderm isolated from later stages but prior to cardiomyogenesis. Moreover, removal of the visceral endoderm but not the primitive streak reduced the formation of beating areas in embryo explants in culture. Coculture with the END2 cell line, which has visceral endoderm-like properties, restored the formation of beating areas. Immunohistochemical analysis showed that the expected candidate signaling pathways downstream of Wnts and bone morphogenetic proteins (BMPs) were active in the embryo at the appropriate time and place to be involved. Overall, the results show that, as in other vertebrates, the (visceral) endoderm plays an important role in the early events of mouse cardiomyogenesis.  相似文献   

17.
In pregastrula stage mouse embryos, visceral endoderm (VE) migrates from a distal to anterior position to initiate anterior identity in the adjacent epiblast. This anterior visceral endoderm (AVE) is then displaced away from the epiblast by the definitive endoderm to become associated with the extra-embryonic ectoderm and subsequently contributes to the yolk sac. Little is known about the molecules that regulate this proximal displacement. Here we describe a role for mouse angiomotin (amot) in VE movements. amot expression is initially detected in the AVE and subsequently in the VE associated with the extra-embryonic ectoderm. Most amot mutant mice die soon after gastrulation with distinct furrows of VE located at the junction of the embryonic and extra-embryonic regions. Mutant analysis suggests that VE accumulation in these furrows is caused by defects in cell migration into proximal extra-embryonic regions, although distal-to-anterior movements associated with the epiblast, definitive endoderm formation, and anterior specification of the epiblast appear to be normal. These results suggest that amot acts within subregions of the VE to regulate morphogenetic movements that are required for embryo viability.  相似文献   

18.
High albumin concentrations in the proximal tubule of the kidney causes tubulointerstitial injury, but how this process occurs is not completely known. To address the signal transduction pathways mis-regulated in renal injury, we studied the modulation of mammalian target of rapamycin (mTOR) complexes by physiologic and pathophysiologic albumin concentrations in proximal tubule cells. Physiologic albumin concentrations activated the PI3K/mTORC2/PKB/mTORC1/S6 kinase (S6K) pathway, but pathophysiologically high albumin concentrations overactivated mTORC1 and inhibited mTORC2 activity. This control process involved the activation of ERK1/2, which promoted the inhibition of TSC2 and activation of S6K. Furthermore, S6K was crucial to promoting the over activation of mTORC1 and inhibition of mTORC2. Megalin expression at the luminal membrane is reduced by high concentrations of albumin. In addition, knockdown of megalin mimicked all the effects of pathophysiologic albumin concentrations, which disrupt normal signal transduction pathways and lead to an overactivation of mTORC1 and inhibition of mTORC2. These data provide new perspectives for understanding the molecular mechanisms behind the effects of albumin on the progression of renal disease.  相似文献   

19.

Background  

Dab2, one of two mammalian orthologs of Drosophila Disabled, has been shown to be involved in cell positioning and formation of visceral endoderm during mouse embryogenesis, but its role in neuronal development is not yet fully understood. In this report, we have examined the localization of the Dab2 protein in the mouse embryonic central nervous system (CNS) at different developmental stages.  相似文献   

20.
The Smad proteins are important intracellular mediators of the transforming growth factor beta (TGFbeta) family of secreted growth factors. Smad1 is an effector of signals provided by the bone morphogenetic protein (BMP) sub-group of TGFbeta molecules. To understand the role of Smad1 in mouse development, we have generated a Smad1 loss-of-function allele using homologous recombination in ES cells. Smad1-/- embryos die by 10.5 dpc because they fail to connect to the placenta. Mutant embryos are first recognizable by 7.0 dpc, owing to a characteristic localized outpocketing of the visceral endoderm at the posterior embryonic/extra-embryonic junction, accompanied by a dramatic twisting of the epiblast and nascent mesoderm. Chimera analysis reveals that these two defects are attributable to a requirement for Smad1 in the extra-embryonic tissues. By 7.5 dpc, Smad1-deficient embryos show a marked impairment in allantois formation. By contrast, the chorion overproliferates, is erratically folded within the extra-embryonic space and is impeded in proximal migration. BMP signals are known to be essential for the specification and proliferation of primordial germ cells. We find a drastic reduction of primordial germ cells in Smad1-deficient embryos, suggesting an essential role for Smad1-dependent signals in primordial germ cell specification. Surprisingly, despite the key involvement of BMP signaling in tissues of the embryo proper, Smad1-deficient embryos develop remarkably normally. An examination of the expression domains of Smad1, Smad5 and Smad8 in early mouse embryos show that, while Smad1 is uniquely expressed in the visceral endoderm at 6.5 dpc, in other tissues Smad1 is co-expressed with Smad5 and/or Smad8. Collectively, these data have uncovered a unique function for Smad1 signaling in coordinating the growth of extra-embryonic structures necessary to support development within the uterine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号