共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic and physical mapping of <Emphasis Type="Italic">Pi36</Emphasis>(t), a novel rice blast resistance gene located on rice chromosome 8 总被引:12,自引:0,他引:12
Blast resistance in the indica cultivar (cv.) Q61 was inherited as a single dominant gene in two F2 populations, F2-1 and F2-2, derived from crosses between the donor cv. and two susceptible japonica cvs. Aichi Asahi and Lijiangxintuanheigu (LTH), respectively. To rapidly determine the chromosomal location of the resistance
(R) gene detected in Q61, random amplified polymorphic DNA (RAPD) analysis was performed in the F2-1 population using bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). One of the three linked
markers identified, BA1126550, was cloned and sequenced. The R gene locus was roughly mapped on rice chromosome 8 by comparison of the BA1126550 sequence with rice sequences in the databases (chromosome landing). To confirm this finding, seven known markers, including
four sequence-tagged-site (STS) markers and three simple-sequence repeat (SSR) markers flanking BA1126550 on chromosome 8, were subjected to linkage analysis in the two F2 populations. The locus was mapped to a 5.8 cM interval bounded by RM5647 and RM8018 on the short arm of chromosome 8. This
novel R gene is therefore tentatively designated as Pi36(t). For fine mapping of the Pi36(t) locus, five additional markers including one STS marker and four candidate resistance gene (CRG) markers were developed
in the target region, based on the genomic sequence of the corresponding region of the reference japonica cv. Nipponbare. The Pi36(t) locus was finally localized to an interval of about 0.6 cM flanked by the markers RM5647 and CRG2, and co-segregated with
the markers CRG3 and CRG4. To physically map this locus, the Pi36(t)-linked markers were mapped by electronic hybridization to bacterial artificial chromosome (BAC) or P1 artificial chromosome
(PAC) clones of Nipponbare, and a contig map was constructed in silico through Pairwise BLAST analysis. The Pi36(t) locus was physically delimited to an interval of about 17.0 kb, based on the genomic sequence of Nipponbare. 相似文献
2.
To understand the molecular basis of broad-spectrum resistance to rice blast, fine-scale mapping of the two blast resistance (R) genes, Pi9( t) and Pi2( t), was conducted. These two genes were introgressed from different resistance donors, previously reported to confer resistance to many blast isolates in the Philippines, and were mapped to an approximately 10-cM interval on chromosome 6. To further test their resistance spectrum, 43 blast isolates collected from 13 countries were used to inoculate the Pi2( t) and Pi9( t) plants. Pi9( t)-bearing lines were highly resistant to all isolates tested, and lines carrying Pi2( t) were resistant to 36 isolates, confirming the broad-spectrum resistance of these two genes to diverse blast isolates. Three RAPD markers tightly linked to Pi9( t) were identified using the bulk segregant analysis technique. Twelve positive bacterial artificial chromosome (BAC) clones were identified and a BAC contig covering about 100 kb was constructed when the Pi9( t) BAC library was screened with one of the markers. A high-resolution map of Pi9( t) was constructed using BAC ends. The Pi2( t) gene was tightly linked to all of the Pi9( t) markers in 450 F(2) plants. These data suggest that Pi9( t) and Pi2( t) are either allelic or tightly linked in an approximately 100-kb region. The mapping results for Pi9( t) and Pi2( t) provide essential information for the positional cloning of these two important blast resistance genes in rice. 相似文献
3.
P. Kumar S. Pathania P. Katoch T. R. Sharma P. Plaha R. Rathour 《Molecular breeding : new strategies in plant improvement》2010,25(2):217-228
We have identified, genetically mapped and physically delimited the chromosomal location of a new blast resistance gene from a broad spectrum resistant genotype ‘DHR9’. The segregation analysis of an F2 progeny of a cross between a susceptible cv. ‘HPU741’ and the resistant genotype ‘DHR9’ suggested that the resistance was conditioned by a single dominant gene. A RAPD marker, OPA82000, linked to the resistance gene was identified by the linkage analysis of 109 F2 individuals. By chromosomal landing of the sequence of RAPD marker on the sequence of reference cv. Nipponbare, the gene was mapped onto rice chromosome 12. Further linkage analysis with two polymorphic simple sequence repeat (SSR) markers, RM2529 and RM1337 of chromosome 12, confirmed the chromosomal localization of the resistance gene. Based on linkage analysis of 521 susceptible F2 plants and comparative haplotype structure analysis of the parental genotypes with SSR and sequence tagged site (STS) markers developed from the Nipponbare PAC/BAC clones of chromosome 12, the resistance gene was delimited within a 2 cM interval defined by STS marker, STS5, on the telomeric side and SSR marker, RRS6 on the centromeric side. By aligning the sequences of linked markers on the sequence of cv. Nipponbare, a ~4.18 Mb cross-over cold region near the centromere of chromosome 12 was delineated as the region of blast resistance gene. In this region, six putatively expressed NBS-LRR genes were identified by surveying the equivalent genomic region of cv. Nipponbare in the TIGR Whole Genome Annotation Database (http://www.tigr.org). NBS-LRR locus, LOC_Os12g18374 situated in BAC clone OJ1115_G02 (Ac. No. AL772419) was short-listed as a potential candidate for the resistance gene identified from DHR9. The new gene was tentatively designated as Pi-42(t). The markers tightly linked to gene will facilitate marker-assisted gene pyramiding and cloning of the resistance gene. 相似文献
4.
Liu X Yang Q Lin F Hua L Wang C Wang L Pan Q 《Molecular genetics and genomics : MGG》2007,278(4):403-410
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum
resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis
were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible)
ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed.
The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance
(R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region
anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940
in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference
sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from
the Pita/Pita
2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial
chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map
of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further
characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese
isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning.
Xinqiong Liu and Qinzhong Yang contributed equally to this work. 相似文献
5.
The major quantitative trait locus qBR9.1 confers broad-spectrum resistance to rice blast, and was mapped to a ~69.1 kb region on chromosome 9 that was inherited from resistant variety Sanhuangzhan No 2 (SHZ-2). Within this region, only one predicted disease resistance gene with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains was found. Specific markers corresponding to this gene cosegregated with blast resistance in F2 and F3 populations derived from crosses of susceptible variety Texianzhan 13 (TXZ-13) to SHZ-2 and the resistant backcross line BC-10. We tentatively designate the gene as Pi56(t). Sequence analysis revealed that Pi56(t) encodes an NBS-LRR protein composed of 743 amino acids. Pi56(t) was highly induced by blast infection in resistant lines SHZ-2 and BC-10. The corresponding allele of Pi56(t) in the susceptible line TXZ-13 encodes a protein with an NBS domain but without LRR domain, and it was not induced by Magnaporthe oryzae infection. Three new cosegregating gene-specific markers, CRG4-1, CRG4-2 and CRG4-3, were developed. In addition, we evaluated polymorphism of the gene-based markers among popular varieties from national breeding programs in Asia and Africa. The presence of the CRG4-2 SHZ-2 allele cosegregated with a blast-resistant phenotype in two BC2F1 families of SHZ-2 crossed to recurrent parents IR64-Sub1 and Swarna-Sub1. CRG4-1 and CRG4-3 showed clear polymorphism among 19 varieties, suggesting that they can be used in marker-assisted breeding to combine Pi56(t) with other target genes in breeding lines. 相似文献
6.
Gu K Tian D Yang F Wu L Sreekala C Wang D Wang GL Yin Z 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,108(5):800-807
Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo) (Ishyama) Dye, is one of the serious diseases prevalent throughout Asia. In a previous study, a resistance (R) locus was transferred from the tetraploid wild rice Oryza minuta to the cultivated rice species, Oryza sativa L. Here, we report the fine genetic mapping of the R locus, tentatively designated as Xa27(t). We performed disease evaluation with an Xa27(t) near-isogenic line, IRBB27, testing 35 Xoo strains collected from 11 countries. The Xa27(t) locus conferred a high level of resistance to 27 strains and moderate resistance to three strains. Resistance of the Xa27(t) gene was developmentally regulated in IRBB27 and showed semi-dominant or a dosage effect in the cv. CO39 genetic background. As a prelude to cloning Xa27(t), a molecular mapping strategy was employed with a large mapping population consisting of 3,875 gametes. Three molecular markers, M336, M1081, and M1059, closely linked to Xa27(t), were identified to facilitate the mapping of Xa27(t) to the long arm of chromosome 6. The Xa27(t) locus was confirmed by chromosome landing of M1081 and M1095 markers on the rice genome. Markers derived from the genomic sequence of O. sativa cv. Nipponbare were used to further saturate the Xa27(t) genomic region. Xa27(t) was finally located within a genetic interval of 0.052 cM, flanked by markers M964 and M1197, and co-segregated with markers M631, M1230, and M449.Communicated by D.J. Mackill 相似文献
7.
M. Srinivas Prasad B. Aruna Kanthi S. M. Balachandran M. Seshumadhav K. Madhan Mohan B. C. Viraktamath 《World journal of microbiology & biotechnology》2009,25(10):1765-1769
Samba mahsuri (BPT 5204) is a cultivar of the medium slender grain indica variety of Oryza
sativa grown across India for its high yield and quality. However, this cultivar is susceptible to several diseases and pests including
rice blast. The analysis of near isogenic lines indicated the presence of a resistance gene, Pi-1(t) in the donor cultivar C101LAC which is highly resistant to the rice blast fungus Magnaporthe grisea (M. grisea). C101LAC was crossed with susceptible indica rice cultivar (BPT 5204) to generate the mapping population. A mendelian segregation
ratio of 3:1 for resistant to susceptible F2 plants using bulk segregation analysis confirmed the presence of a major gene pi-1(t) by simple sequence repeats marker RM224 to the highly virulent blast isolate DRR 001. 相似文献
8.
The Alhambra ( Alh) gene is the Drosophila homologue of the human AF10 gene. AF10 has been identified as a fusion partner of MLL, a human homologue of the fly gene trithorax, in infant leukemias. The endogenous function of human AF10 is not known, but may be vital to its role in acute leukemia. This prompted us to analyse Alh function. We describe here the genetic organisation of the Alh locus in D. melanogaster. We show that an independent lethal complementation group encoding a muscle protein ( Mlp84B) is located within an Alh intron. We have already shown that the leucine zipper (LZ) domain of ALH activates several Polycomb group-responsive elements. We further demonstrate that the LZ domain on its own bears the Alh vital function, since it is necessary and sufficient for rescue of Alh mutant lethality. Finally, we demonstrate that, in contrast to a previous report, Alh does not affect position-effect variegation.Communicated by G. Reuter 相似文献
9.
Xifeng Chen Jianwei Pan Jing Cheng Guanghuai Jiang Yang Jin Zhimin Gu Qian Qian Wenxue Zhai Bojun Ma 《Molecular breeding : new strategies in plant improvement》2009,24(4):387-395
Spotted leaf 5 (spl5), a lesion mimic mutant, was first identified in rice (Oryza sativa L.) japonica cv. Norin8 in 1978. This mutant exhibits spontaneous disease-like lesions in the absence of any pathogens and resistance
to rice blast and bacterial blight; however, the target gene has not yet been isolated. In the present study, we employed
a map-based cloning strategy to finely map the spl5 gene. In an initial mapping with 100 F2 individuals (spl5/spl5) derived from a cross between the spl5 mutant and indica cv. 93-11, the spl5 gene was located in a 3.3-cM region on chromosome 7 using six simple sequence repeat (SSR) markers. In a high-resolution
genetic mapping, two F2 populations with 3,149 individuals (spl5/spl5) were derived from two crosses between spl5 mutant and two indica cvs. 93-11 and Zhefu802 and six sequence-tagged site (STS) markers were newly developed. Finally, the spl5 gene was mapped to a region of 0.048 cM between two markers SSR7 and RM7121. One BAC/PAC contig map covering these markers’
loci and the spl5 gene was constructed through Pairwise BLAST analysis. Our bioinformatics analysis shows that the spl5 gene is located in the 80-kb region between two markers SSR7 and RM7121 with a high average ratio of physical to genetic
distance (1.67 Mb/cM) and eighteen candidate genes. The analysis of these candidate genes indicates that the spl5 gene represents a novel class of regulators controlling cell death and resistance response in plants. 相似文献
10.
Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved
by pyramiding of various resistance (R) genes. Pia, carried by cv. Aichi Asahi, was evaluated against 612 isolates of M. oryzae collected from 10 Chinese provinces. The Pia gene expresses weak resistance in all the provinces except for Jiangsu. Genomic position-ready marker-based linkage analysis
was carried out in a mapping population consisting of 800 F2 plants derived from a cross of Aichi Asahi×Kasalath. The locus was defined in an interval of approximately 90 kb, flanked
by markers A16 and A21. Four candidate genes (Pia-1, Pia-2, Pia-3, and Pia-4), all having the R gene conserved structure, were predicted in the interval using the cv. Nipponbare genomic sequence. Four candidate resistance
gene (CRG) markers (A17, A25, A26, and A27), derived from the four candidates, were subjected to genotyping with the recombinants
detected at the flanking markers. The first three markers completely co-segregated with the Pia locus, and the fourth was absent in the Aichi Asahi genome and disordered with the Pia locus and its flanking markers, indicating that the fourth candidate gene, Pia-4, could be excluded. Co-segregation marker-based genotyping of the three sets of differentials with known R gene genotypes revealed that the genotype of A26 (Pia-3) perfectly matched the R gene genotype of Pia, indicating that Pia-3 is the strongest candidate gene for Pia. 相似文献
11.
Xin Xu N. Hayashi C. T. Wang H. Kato T. Fujimura S. Kawasaki 《Molecular breeding : new strategies in plant improvement》2008,22(2):289-299
The Pik-h gene in rice confers resistance to several races of rice blast fungus (Magnaporthe oryzae), and has been classified as a member of the Pik cluster, one of the most resistance (R) gene-dense regions in the rice genome. However, the loss of a key mutant isolate has long made it difficult to differentiate
Pik-h from other Pik group genes especially from Pik-m. We identified new natural isolates enabling the differentiation between Pik-h and Pik-m genes, and first confirmed the authenticity of the International Rice Research Institute (IRRI) “monogenic” line IRBLkh-K3,
and then fine-mapped the Pik-h gene in the Pik cluster. Using 701 susceptible individuals among 3,060 siblings from a cross of IRBLkh-K3×CO39, the Pik-h region was delimited to 270 kb, the narrowest interval among the Pik group genes reported to date, in the cv. Nipponbare genome. Annotation of this genome region first revealed 6 NBS-LRR type
R-gene analogs (RGAs), clustered within the central 120 kb, as possible counterparts of Pik-h and 6 other Pik group R genes. Interestingly, the Pik-h region and the cluster of RGAs were shown to be located 130 kb and 230 kb apart from Xa4 and Xa2 bacterial blight resistance genes, respectively, once classified as belonging to the Pik cluster. The closest recombination events were limited to the margins of the Pik-h region, and recombination was suppressed in the core interval with the RGA cluster. This fine-mapping, performed in a short
time using an HEGS system, will facilitate utilization of the cluster’s genetic resources and help to elucidate the mechanism
of evolution of R-genes. The presence of natural isolates also confirmed that evolution of Pik-h corresponds to pathogen evolution. 相似文献
12.
Junsong Pan Junyi Tan Yuhui Wang Xiangyang Zheng Ken Owens Dawei Li Yuhong Li Yiqun Weng 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(7):1577-1587
Key message
Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.Abstract
Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.13.
Roux SR Hackauf B Linz A Ruge B Klocke B Wehling P 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,110(1):202-201
Three dominant resistance genes, Pr3, Pr4, and Pr5, were identified by genetic analysis of resistance to leaf rust in rye (Puccinia recondita f. sp. secalis). Each of the three genes confers resistance to a broad scale of single-pustule isolates (SPIs), but differences could be observed for specific Pr gene/SPI combinations. Resistance conferred by the three genes was effective in both detached-leaf tests carried out on seedlings and in field tests of adult plants. Molecular marker analysis mapped Pr3 to the centromeric region of rye chromosome arm 1RS, whereas Pr4 and Pr5 were assigned to the centromeric region of 1RL. Chromosomal localization and reaction patterns to specific SPIs provide evidence that the three Pr genes represent distinct and novel leaf-rust resistance genes in rye. The contributions of these genes to resistance breeding in rye and wheat are discussed.The authors dedicate this paper to Prof. Dr. H.H. Geiger, University of Hohenheim, on the occasion of his 65th birthday.An erratum to this article can be found at 相似文献
14.
Grattapaglia D Ribeiro VJ Rezende GD 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,109(1):192-199
The conventional way to drive modifications in old forest tree seed orchards is to establish progeny trials involving each parent tree and then evaluate its contribution to the performance of the progeny by estimating its general and specific combining ability (GCA and SCA). In this work, we successfully applied an alternative parent selection tactic based on paternity testing of superior offspring derived from a hybrid seed orchard established with a single Eucalyptus grandis seed parents and six E. urophylla pollen parents. A battery of 14 microsatellite markers was used to carry out parentage tests of 256 progeny individuals including two independent samples of selected trees and one control unselected sample, all derived from 6-year-old forest stands in eastern Brazil. Paternity determination was carried out for all progeny individuals by a sequential paternity exclusion procedure. Exclusion was declared only when the obligatory paternal allele in the progeny tree was not present in the alleged parent tree for at least four independent markers to avoid false exclusions due to mutation or null alleles. After maternity checks to identify seed mixtures and selfed individuals, the paternity tests revealed that approximately 29% of the offspring was sired by pollen parents outside the orchard. No selfed progeny were found in the selected samples. Three pollen parents were found to have sired essentially all of the offspring in the samples of selected and non-selected progeny individuals. One of these three parents sired significantly more selected progeny than unselected ones (P0.0002 in a Fisher exact test). Based on these results, low-reproductive-successful parents were culled from the orchard, and management procedures were adopted to minimize external pollen contamination. A significant difference (P<0.01) in mean annual increment was observed between forest stands produced with seed from the orchard before and after selection of parents and revitalization of the orchard. An average realized gain of 24.3% in volume growth was obtained from the selection of parents as measured in forest stands at age 2–4 years. The marker-assisted tree-breeding tactic presented herein efficiently identified top parents in a seed orchard and resulted in an improved seed variety. It should be applicable for rapidly improving the output quality of seed orchards, especially when an emergency demand for improved seed is faced by the breeder.Communicated by D.B. Neale 相似文献
15.
Hughes SL Hunter PJ Sharpe AG Kearsey MJ Lydiate DJ Walsh JA 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,107(7):1169-1173
A new source of resistance to the pathotype 4 isolate of Turnip mosaic virus (TuMV) CDN 1 has been identified in Brassica napus (oilseed rape). Analysis of segregation of resistance to TuMV isolate CDN 1 in a backcross generation following a cross between a resistant and a susceptible B. napus line showed that the resistance was dominant and monogenic. Molecular markers linked to this dominant resistance were identified using amplified fragment length polymorphism (AFLP) and microsatellite bulk segregant analysis. Bulks consisted of individuals from a BC1 population with the resistant or the susceptible phenotype following challenge with CDN 1. One AFLP and six microsatellite markers were associated with the resistance locus, named TuRB03, and these mapped to the same region on chromosome N6 as a previously mapped TuMV resistance gene TuRB01. Further testing of TuRB03 with other TuMV isolates showed that it was not effective against all pathotype 4 isolates. It was effective against some, but not all pathotype 3 isolates tested. It provided further resolution of TuMV pathotypes by sub-dividing pathotypes 3 and 4. TuRB03 also provides a new source of resistance for combining with other resistances in our attempts to generate durable resistance to this virus. 相似文献
16.
Yang H You A Yang Z Zhang F He R Zhu L He G 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,110(1):182-191
Resistance to the brown planthopper (BPH), Nilaparvata lugens Stål, a devastating sucking insect pest of rice, is an important breeding objective in rice improvement programs. Bph15, one of the 17 major BPH resistance genes so far identified in both cultivated and wild rice, has been identified in an introgression line, B5, and mapped on chromosome 4 flanked by restriction fragment length polymorphism markers C820 and S11182. In order to pave the way for positional cloning of this gene, we have developed a high-resolution genetic map of Bph15 by positioning 21 DNA markers in the target chromosomal region. Mapping was based on a PCR-based screening of 9,472 F2 individuals derived from a cross between RI93, a selected recombinant inbred line of B5 bearing the resistance gene Bph15, and a susceptible variety, Taichung Native 1, in order to identify recombinant plants within the Bph15 region. Recombinant F2 individuals with the Bph15 genotype were determined by phenotype evaluation. Analysis of recombination events in the Bph15 region delimited the gene locus to an interval between markers RG1 and RG2 that co-segregated with the M1 marker. A genomic library of B5 was screened using these markers, and bacterial artificial chromosome clones spanning the Bph15 chromosome region were obtained. An assay of the recombinants using the sub-clones of these clones in combination with sequence analysis delimited the Bph15 gene to a genomic segment of approximately 47 kb. This result should serve as the basis for eventual isolation of the Bph15 resistance gene. 相似文献
17.
Virgilio C. Andaya Thomas H. Tai 《Molecular breeding : new strategies in plant improvement》2007,20(4):349-358
Rice seedlings are sensitive to low temperatures (≤15°C) and under prolonged or repeated exposure, yellowing and stunting
are commonly observed. Damage to seedlings results in poor stand establishment and delayed maturation, which can cause significant
reductions in yield. In general, japonica rice varieties exhibit more cold tolerance than indica varieties. Earlier genetic analysis of the California rice variety M202 revealed several quantitative trait loci (QTL) that
contribute to its tolerance to low temperatures in comparison to the indica rice variety IR50. Among these QTL, qCTS4 is associated with tolerance to yellowing and stunting of rice seedlings and accounts for 40% of the phenotypic variation.
Here we report on the fine mapping of qCTS4 to a 128 kb region of chromosome 4, which is highly suppressed for recombination in our mapping populations. Our results
provide the necessary foundation for identifying the gene(s) underlying qCTS4 and the markers developed here may be used to introgress this region into indica varieties to improve seedling tolerance to low temperatures.
The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information
and does not imply recommendation or endorsement by the U.S. Department of Agriculture. 相似文献
18.
Ning Xiao Yunyu Wu Zhiping Wang Yuhong Li Cunhong Pan Xiaoxiang Zhang Ling Yu Guangqing Liu Changhai Zhou Hongjuan Ji Niansheng Huang Min Jiang Zhengyuan Dai Aihong Li 《Molecular breeding : new strategies in plant improvement》2018,38(12):142
Rice blast is a serious disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae. Incorporating disease resistance genes in rice varieties and characterizing the distribution of M. oryzae isolates form the foundation for enhancing rice blast resistance. In this study, the blast resistance gene Pish was observed to be differentially distributed in the genomes of rice sub-species. Specifically, Pish was present in 80.5% of Geng varieties, but in only 2.3% of Xian varieties. Moreover, Pish conferred resistance against only 23.5% of the M. oryzae isolates from the Geng-planting regions, but against up to 63.2% of the isolates from the Xian-planting regions. Thus, Pish may be an elite resistance gene for improving rice blast resistance in Xian varieties. Therefore, near-isogenic lines (NILs) with Pish and the polygene pyramid lines (PPLs) PPLPish/Pi1, PPLPish/Pi54, and PPLPish/Pi33 in the Xian background Yangdao 6 were generated using a molecular marker-assisted selection method. The results suggested that (1) Pish significantly improved rice blast resistance in Xian varieties, which exhibited considerably improved seedling and panicle blast resistance after Pish was introduced; (2) PPLs with Pish were more effective than the NILs with Pish regarding seedling and panicle blast resistance; (3) the PPL seedling and panicle blast resistance was improved by the complementary and overlapping effects of different resistance genes; and (4) the stability of NIL and PPL resistance varied under different environmental conditions, with only PPLPish/Pi54 exhibiting highly stable resistance in three natural disease nurseries (Jianyang, Jinggangshan, and Huangshan). This study provides new blast resistance germplasm resources and describes a novel molecular strategy for enhancing rice blast resistance. 相似文献
19.
20.
Takashi Okada Andrew S. Catanach Susan D. Johnson Ross A. Bicknell Anna M. Koltunow 《Sexual plant reproduction》2007,20(4):199-211
Asexual seed formation (apomixis) in Hieracium aurantiacum occurs by mitotic embryo sac formation without prior meiosis in ovules (apomeiosis), followed by fertilization-independent
embryo and endosperm development. Sexual reproduction begins first in Hieracium ovules with megaspore mother cell (MMC) formation. Apomixis initiates with the enlargement of somatic cells, termed aposporous
initial (AI) cells, near sexual cells. AI cells grow towards sexually programmed cells undergoing meiosis, which degrade as
the dividing nuclei of AIs obscure and displace them. Following Agrobacterium-mediated transformation of an aneuploid Hieracium aurantiacum apomict, a somaclonal mutant designated “loss of apomeiosis 1” (loa1) was recovered, which had significantly lost the ability to form apomictic seed. Maternal apomictic progeny were rare and
low levels of germinable seedlings were primarily derived from meiotically derived eggs. Cytological analysis revealed defects
in AI formation and function in loa1. Somatic cells enlarged some distance away from sexual cells and unlike AI cells, these expanded away from sexual cells without
nuclear division. Surprisingly, many accumulated callose in the walls, a marker associated with meiotically specified cells.
These defective AI (DAI) cells only had partial sexual identity as they failed to express a marker reflecting entry to meiosis
that was easily detected in MMCs and they ultimately degraded. DAI cell formation did not lead to a compensatory increase
in functional sexual embryo sacs, as collapse of meiotic embryo sacs was prevalent in the aneuploid somaclonal mutant. Positional
cues that are important for AI cell differentiation, growth and fate may have been disrupted in the loa1 mutant and this is discussed.
The authors Takashi Okada, Andrew S. Catanach and Susan D. Johnson made equal contributions to the data. 相似文献