共查询到20条相似文献,搜索用时 0 毫秒
1.
Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. 总被引:8,自引:0,他引:8
M M Hussain F R Maxfield J Más-Oliva I Tabas Z S Ji T L Innerarity R W Mahley 《The Journal of biological chemistry》1991,266(21):13936-13940
The involvement of the low density lipoprotein receptor-related protein (LRP) in chylomicron remnant (CR) catabolism was investigated. Ligand blot analyses demonstrated that beta-very low density lipoproteins (beta-VLDL) incubated with apolipoprotein E (beta-VLDL+E) bound to the LRP and low density lipoprotein receptors, whereas active (receptor-binding) alpha 2-macroglobulin (alpha 2M) bound only to LRP partially purified from rat liver membranes. Iodinated beta-VLDL+E and active alpha 2M showed high affinity binding to the LRP/alpha 2M receptor of low density lipoprotein receptor-negative fibroblasts. The binding and degradation of radiolabeled alpha 2M by these cells were partially inhibited by beta-VLDL+E. Furthermore, alpha 2M interfered with the internalization of beta-VLDL+E and subsequent induction in the cholesterol esterification by these cells. These studies suggested that remnant lipoproteins and active alpha 2M compete for binding to the LRP/alpha 2M receptor. Next, we examined whether the LRP/alpha 2M receptor plays a role, in the presence of low density lipoprotein receptors, in the in vivo catabolism of CR in mice. In vivo studies demonstrated that the unlabeled active, but not the native, alpha 2M partially inhibited the plasma clearance and hepatic uptake of radiolabeled CR or apoE-enriched radiolabled CR. Likewise, apoE-enriched CR retarded the plasma clearance and hepatic uptake of radiolabeled active alpha 2M. These studies provide physiological evidence that the LRP/alpha 2M receptor may function as a CR receptor that removes CR from the plasma. 相似文献
2.
S E Williams J D Ashcom W S Argraves D K Strickland 《The Journal of biological chemistry》1992,267(13):9035-9040
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) consists of two polypeptides, 515 and 85 kDa, that are noncovalently associated. A 39-kDa polypeptide, termed the receptor-associated protein (RAP), interacts with the 515-kDa subunit after biosynthesis of these molecules and remains associated on the cell surface. This molecule regulates ligand binding of alpha 2MR/LRP (Herz, J., Goldstein, J. L., Strickland, D. K., Ho, Y. K., and Brown, M. S. (1991) J. Biol. Chem. 266, 21232-21238). Titration and binding studies indicate that RAP binds to two equivalent binding sites on alpha 2MR/LRP, with a KD of 14 nM. Heterologous ligand displacement experiments demonstrated that RAP completely inhibits the binding of 125I-activated alpha 2M to human fibroblasts and to the purified alpha 2MR/LRP, with a Ki of 23 and 26 nM, respectively. A direct correlation between the degree of binding of RAP to the receptor and the degree of ligand inhibition was observed, indicating that as the RAP binding sites are saturated, alpha 2MR/LRP loses its ability to bind ligands. Thus, the amount of RAP bound to alpha 2MR/LRP dictates the level of receptor activity. A model is proposed in which alpha 2MR/LRP contains multiple ligand binding sites, each regulated by a separate RAP site. 相似文献
3.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. 总被引:20,自引:0,他引:20
M Z Kounnas R E Morris M R Thompson D J FitzGerald D K Strickland C B Saelinger 《The Journal of biological chemistry》1992,267(18):12420-12423
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2 MR/LRP) is a large cell-surface glycoprotein consisting of a 515-kDa and an 85-kDa polypeptide; this receptor is thought to be responsible for the binding and endocytosis of activated alpha 2-macroglobulin and apoE-enriched beta-very low density lipoprotein. A similar high molecular weight glycoprotein has been identified as a potential receptor for Pseudomonas exotoxin A (PE). We demonstrate that the alpha 2 MR/LRP and the PE-binding glycoprotein have a similar mobility upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and are immunologically indistinguishable. Furthermore, affinity-purified alpha 2 MR/LRP binds specifically to PE but not to a mutant toxin defective in its ability to bind cells. The 39-kDa receptor-associated protein, which blocks binding of ligands to alpha 2 MR/LRP, also prevents binding and subsequent toxicity of PE for mouse fibroblasts. The concentration of receptor-associated protein that was required to reduce binding and toxicity to 50% was approximately 14 nM, a value virtually identical to the KD measured for the interaction of receptor-associated protein with the purified receptor. Overall, the studies strongly suggest that the alpha 2 MR/LRP is responsible for internalizing PE. 相似文献
4.
D A Chappell G L Fry M A Waknitz P H Iverius S E Williams D K Strickland 《The Journal of biological chemistry》1992,267(36):25764-25767
Lipoprotein lipase (LPL), the major lipolytic enzyme involved in the conversion of triglyceride-rich lipoproteins to remnants, was found to compete with binding of activated alpha 2-macroglobulin (alpha 2M*) to the low density lipoprotein receptor-related protein (LRP)/alpha 2-macroglobulin receptor. Bovine milk LPL displaced both 125I-labeled alpha 2M* and 39-kDa alpha 2M receptor-associated protein (RAP) from the surface of cultured mutant fibroblasts lacking LDL receptors with apparent KI values at 4 degrees C of 6.8 and 30 nM, respectively. Furthermore, LPL inhibited the cellular degradation of 125I-alpha 2M* at 37 degrees C. Because both alpha 2M* and RAP interact with LRP, these data suggest that LPL binds specifically to this receptor. This was further supported by observing that an immunoaffinity-isolated polyclonal antibody against LRP blocked cellular degradation of 125I-LPL in a dose-dependent manner. In addition, 125I-LPL bound to highly purified LRP in a solid-phase assay with a KD of 18 nM, and this binding could be partially displaced with alpha 2M* (KI = 7 nM) and RAP (KI = 3 nM). Taken together, these data establish that LPL binds with high affinity to LRP and undergoes LRP-mediated cellular uptake. The implication of these findings for lipoprotein catabolism in vivo may be important if LRP binding is preserved when LPL is attached to lipoproteins. If so, LPL might facilitate LRP-mediated clearance of lipoproteins. 相似文献
5.
The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor 总被引:32,自引:0,他引:32
Segarini PR Nesbitt JE Li D Hays LG Yates JR Carmichael DF 《The Journal of biological chemistry》2001,276(44):40659-40667
Connective tissue growth factor (CTGF) expression is regulated by transforming growth factor-beta (TGF-beta) and strong up-regulation occurs during wound healing; in situ hybridization data indicate that there are high levels of CTGF expression in fibrotic lesions. Recently the binding parameters of CTGF to both high and lower affinity cell surface binding components have been characterized. Affinity cross-linking and SDS-polyacrylamide gel electrophoresis analysis demonstrated the binding of CTGF to a cell surface protein with a mass of approximately 620 kDa. We report here the purification of this protein by affinity chromatography on CTGF coupled to Sepharose and sequence information obtained by mass spectroscopy. The binding protein was identified as the multiligand receptor, low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP). The identification of LRP as a receptor for CTGF was validated by several studies: 1) binding competition with many ligands that bind to LRP, including receptor-associated protein; 2) immunoprecipitation of CTGF-receptor complex with LRP antibodies; and 3) cells that are genetically deficient for LRP were unable to bind CTGF. Last, CTGF is rapidly internalized and degraded and this process is LRP-dependent. In summary, our data indicate that LRP is a receptor for CTGF, and may play an important role in mediating CTGF biology. 相似文献
6.
U K Misra G Gawdi M Gonzalez-Gronow S V Pizzo 《The Journal of biological chemistry》1999,274(36):25785-25791
We have studied insulin-dependent regulation of macrophage alpha(2)-macroglobulin signaling receptors (alpha(2)MSR) and low density lipoprotein receptor-related protein/alpha(2)M receptors (LRP/alpha(2)MR) employing cell binding of (125)I-alpha(2)M*, inhibition of binding by receptor-associated protein (RAP) or Ni(2+), LRP/alpha(2)MR mRNA levels, and generation of second messengers. Insulin treatment increased the number of alpha(2)M* high (alpha(2)MSR) and low (LRP/alpha(2)MR) affinity binding sites from 1, 600 and 67,000 to 2,900 and 115,200 sites per cell, respectively. Neither RAP nor Ni(2+) blocked the binding of (125)I-alpha(2)M* to alpha(2)MSR on insulin- or buffer-treated cells, but they both blocked binding to LRP/alpha(2)MR. Insulin significantly increased LRP/alpha(2)MR mRNA levels in a dose- and time-dependent manner. Insulin-augmented (125)I-alpha(2)M* binding to macrophages was severely reduced by wortmannin, LY294002, PD98059, SB203580, or rapamycin. The increase in alpha(2)MSR receptor synthesis was reflected by augmented generation of IP(3) and increased [Ca(2+)](i) levels upon receptor ligation. Incubation of macrophages with wortmannin, LY294002, PD98059, SB203580, rapamycin, or antibodies against insulin receptors before insulin treatment and alpha(2)M* stimulation significantly reduced the insulin-augmented increase in IP(3) and [Ca(2+)](i) levels. Pretreatment of cells with actinomycin D or cycloheximide blocked the synthesis of new alpha(2)MSR. In conclusion, we show here that insulin coordinately regulates macrophage alpha(2)MSR and LRP/alpha(2)MR, utilizing both the PI 3-kinase and Ras signaling pathways to induce new synthesis of these receptors. 相似文献
7.
M Z Kounnas W S Argraves D K Strickland 《The Journal of biological chemistry》1992,267(29):21162-21166
The 39-kDa receptor-associated protein (RAP) binds to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) and inhibits binding of ligands to this receptor. The in vivo function of RAP may be to regulate ligand binding and/or assist in the correct biosynthetic processing or trafficking of the alpha 2MR/LRP. Here we show that RAP binds another putative receptor, the kidney glycoprotein 330 (gp330). Gp330 is a high molecular weight glycoprotein that is structurally similar to both the alpha 2MR/LRP and low density lipoprotein receptor. The ability of RAP to bind to gp330 was demonstrated by ligand blotting and solid phase binding assays, which showed that RAP binds to gp330 with high affinity (Kd = 8 nM). Exploiting the interaction of gp330 and RAP, we purified gp330 by affinity chromatography with a column of RAP coupled to Sepharose. Gp330 preparations obtained by this procedure were notably more homogeneous than those obtained by conventional methods. Immunocytochemical staining of human kidney sections localized RAP to the brush-border epithelium of proximal tubules. The fact that gp330 is also primarily expressed by proximal tubule epithelial cells strengthens the likelihood that the interaction between gp330 and RAP occurs in vivo. The functional significance of RAP binding to gp330 may be to antagonize ligand binding as has been demonstrated for the alpha 2MR/LRP or to assist in the biosynthetic processing and/or trafficking of this receptor. 相似文献
8.
M E G?fvels G Coukos R Sayegh C Coutifaris D K Strickland J F Strauss 《The Journal of biological chemistry》1992,267(29):21230-21234
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) has several ligands including activated alpha 2-macroglobulin, pregnancy zone protein, and very low density lipoproteins enriched with apolipoprotein E. The diversity of ligands suggests a role for the alpha 2MR/LRP in a variety of processes including tissue remodeling and lipoprotein metabolism. We examined alpha 2MR/LRP in placental trophoblasts, invasive cells that also function in lipid transport and cholesterol metabolism. alpha 2MR/LRP protein was localized by immunohistochemistry in the syncytiotrophoblast of term placenta. Cytotrophoblasts did not stain prominently. alpha 2MR/LRP (protein and message) in primary cultures of human trophoblast cells increased as cytotrophoblasts differentiated into syncytiotrophoblast. 8-Bromo-cAMP prevented this increase and suppressed alpha 2MR/LRP expression. The cyclic nucleotide had similar suppressive effects on alpha 2MR/LRP in BeWo choriocarcinoma cells. In contrast, low density lipoprotein receptor gene expression was increased. We conclude that: 1) there is a differentiation-dependent pattern of alpha 2MR/LRP expression in the human trophoblast; 2) cAMP negatively regulates alpha 2MR/LRP; 3) there is an inverse relationship between alpha 2MR/LRP and low density lipoprotein receptor gene expression in trophoblast cells. 相似文献
9.
D K Strickland J D Ashcom S Williams W H Burgess M Migliorini W S Argraves 《The Journal of biological chemistry》1990,265(29):17401-17404
Ten peptides, derived from human alpha 2-macroglobulin (alpha 2M) receptor by chemical or proteolytic digestion, were sequenced. Comparative analysis revealed that all of the resulting sequences were present within the cDNA-deduced structure of low density lipoprotein receptor-related protein (LRP) (Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gausepohl, H., and Stanley, K. K. (1988) EMBO J. 7, 4119-4127). The findings provide evidence that the alpha 2M receptor and LRP are the same molecule. Further evidence comes from immunoprecipitation experiments using a monoclonal antibody specific for the alpha 2M receptor that show this molecule, like LRP, to contain two polypeptides of approximately 420 and 85 kDa that are noncovalently associated. An additional component of this receptor system is a 39-kDa polypeptide that co-purifies with the alpha 2M receptor during affinity chromatography. Solid phase binding studies reveal that the 39-kDa polypeptide binds with high affinity (Kd = 18 nM) to the 420-kDa component of the alpha 2M receptor. The apparent identity of LRP and the alpha 2M receptor suggests that this molecule is a multifunctional receptor with the capacity to bind diverse biological ligands and highlights a possible relationship between two previously unrelated biological processes, lipid metabolism and proteinase regulation. 相似文献
10.
Mikhailenko I Battey FD Migliorini M Ruiz JF Argraves K Moayeri M Strickland DK 《The Journal of biological chemistry》2001,276(42):39484-39491
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds several ligands including the activated form of the pan-proteinase inhibitor alpha(2)-macroglobulin (alpha(2)M*) and amyloid precursor protein, two ligands genetically linked to Alzheimer's disease. To delineate the contribution of LRP to this disease, it will be necessary to identify the sites on this receptor which are responsible for recognizing these and other ligands to assist in the development of specific inhibitors. Structurally, LRP contains four clusters of cysteine-rich repeats, yet studies thus far suggest that only two of these clusters (clusters II and IV) bind ligands. Identifying binding sites within LRP for certain ligands, such as alpha(2)M*, has proven to be difficult. To accomplish this, we mapped the binding site on LRP for two inhibitors of alpha(2)M* uptake, monoclonal antibody 8G1 and an amino-terminal fragment of receptor-associated protein (RAP D1D2). Surprisingly, the inhibitors recognized different clusters of ligand binding repeats: 8G1 bound to repeats within cluster I, whereas the RAP fragment bound to repeats within cluster II. A recombinant LRP mini-receptor containing the repeats from cluster I along with three ligand binding repeats from cluster II was effective in mediating the internalization of (125)I-labeled alpha(2)M*. Together, these studies indicate that ligand binding repeats from both cluster I and II cooperate to generate a high affinity binding site for alpha(2)M*, and they suggest a strategy for developing specific inhibitors to block alpha(2)M* binding to LRP by identifying molecules capable of binding repeats in cluster I. 相似文献
11.
Meilinger M Gschwentner C Burger I Haumer M Wahrmann M Szollar L Nimpf J Huettinger M 《The Journal of biological chemistry》1999,274(53):38091-38096
Complement component 3 (C3) and alpha(2)-macroglobulin evolved from a common, evolutionarily old, ancestor gene. Low density lipoprotein-receptor-related protein/alpha(2)-macroglobulin receptor (LRP/alpha(2)MR), a member of the low density lipoprotein receptor family, is responsible for the clearance of alpha(2)-macroglobulin-protease complexes. In this study, we examined whether C3 has conserved affinity for LRP/alpha(2)MR. Ligand blot experiments with human (125)I-C3 on endosomal proteins show binding to a 600-kDa protein, indistinguishable from LRP/alpha(2)MR by the following criteria: it is competed by receptor-associated protein (the 39-kDa receptor-associated protein that impairs binding of all ligands to LRP/alpha(2)MR) and by lactoferrin and Pseudomonas exotoxin, other well known ligands of the multifunctional receptor. Binding of C3 is sensitive to reduction of the receptor and is Ca(2+)-dependent. All these features are typical for cysteine-rich binding repeats of the low density lipoprotein receptor family. In LRP/alpha(2)MR, they are found in four cassettes (2, 8, 10, and 11 repeats). Ligand blotting to chicken LR8 demonstrates that a single 8-fold repeat is sufficient for binding. Confocal microscopy visualizes initial surface labeling of human fibroblasts incubated with fluorescent labeled C3, which changes after 5 min to an intracellular vesicular staining pattern that is abolished in the presence of receptor-associated protein. Cell uptake is abolished in mouse fibroblasts deficient in LRP/alpha(2)MR. Native plasma C3 is not internalized. We demonstrate that the capacity to internalize C3 is saturable and exhibits a K(D) value of 17 nM. After intravenous injection, rat hepatocytes accumulate C3 in sedimentable vesicles with a density typical for endosomes. In conclusion, our ligand blot and uptake studies demonstrate the competence of the LRP/alpha(2)MR to bind and endocytose C3 and provide evidence for an LRP/alpha(2)MR-mediated system participating in C3 metabolism. 相似文献
12.
alpha2-Macroglobulin (alpha2M) regulates cell physiology by binding to cellular receptors; however, residues that contribute to receptor-binding have not been elucidated in the full-length protein. In alpha2M fragments, expressed in bacteria, Lys(1370) and Lys(1374) are critical for binding to the low density lipoprotein receptor-related protein-1 (LRP-1) and a distinct alpha2M-signaling receptor. We expressed full-length recombinant human alpha2M (r(alpha)2M) and mutants in which Lys(1370) or Lys(1374) was converted to alanine in K-562 cells. The r(alpha)2M species demonstrated intact structure and function, as determined by subunit size, intersubunit disulfide bonds, reaction with trypsin or methylamine, and ability to undergo conformational change. Binding of transforming growth factor-beta1 was unaltered. Mutation of Lys(1370) almost entirely inhibited specific binding of methylamine-activated r(alpha)2M to RAW 264.7 cells. Mutation of Lys(1374) had no effect. Binding of r(alpha)2M to RAW 264.7 cells was blocked by receptor-associated protein, indicating an essential role for LRP-1. These studies demonstrate that a single mutation in full-length r(alpha)2M is sufficient to block binding to LRP-1. 相似文献
13.
Given the importance of the low density lipoprotein receptor-related protein (LRP) as an essential endocytosis and signaling receptor for many protein ligands, and of alpha2-macroglobulin (alpha2M)-proteinase complexes as one such set of ligands, an understanding of the specificity of their interaction with LRP is an important goal. A starting point is the known role of the 138-residue receptor binding domain (RBD) in binding to LRP. Previous studies have localized high affinity alpha2M binding to the eight complement repeat (CR)-containing cluster 2 of LRP. In the present study we have identified the minimum CR domains that constitute the full binding site for RBD and, hence, for alpha2M on LRP. We report on the ability of the triple construct of CR3-4-5 to bind RBD with an affinity (Kd = 130 nM) the same as for isolated RBD to intact LRP. This Kd is 30-fold smaller than for RBD to CR5-6-7, demonstrating the specificity of the interaction with CR3-4-5. Binding requires previously identified critical lysine residues but is almost pH-independent within the range of pH values encountered between extracellular and internal compartments, consistent with an earlier proposed model of intracellular ligand displacement by intramolecular YWTD domains. The present findings suggest a model to explain the ability of LRP to bind a wide range of structurally unrelated ligands in which a nonspecific ligand interaction with the acidic region present in most CR domains is augmented by interactions with other CR surface residues that are unique to a particular CR cluster. 相似文献
14.
M C van Dijk J K Kruijt W Boers C Linthorst T J van Berkel 《The Journal of biological chemistry》1992,267(25):17732-17737
The properties of the recognition sites for alpha 2-macroglobulin (alpha 2-macroglobulin receptor; low density lipoprotein receptor-related protein) and beta-migrating very low density lipoprotein (beta-VLDL) (remnant receptor) on rat parenchymal cells were directly compared to analyze whether both substrates are recognized and internalized by the same receptor system. In cholesterol-fed rats, the large circulating pool of beta-VLDL is unable to diminish the liver uptake of 125I-labeled alpha 2-macroglobulin, while liver uptake of 125I-labeled beta-VLDL in these rats is reduced by 87.3% at 10 min after injection. In vitro competition studies with isolated parenchymal liver cells demonstrate that the binding of 125I-labeled alpha 2-macroglobulin to rat parenchymal cells is not effectively competed for by beta-VLDL, whether this lipoprotein is additionally enriched in apolipoprotein E or not. Binding of alpha 2-macroglobulin to parenchymal cells requires the presence of calcium, while binding of beta-VLDL does not. Incubation of parenchymal cells for 1 h with proteinase K reduced the subsequent binding of alpha 2-macroglobulin by 90.1%, while the binding of beta-VLDL was reduced by only 20.2%. In the presence of monensin, the association of alpha 2-macroglobulin to parenchymal cells at 2 h of incubation was reduced by 64.7%, while the association of beta-VLDL was not affected. Preincubation of parenchymal cells with monensin for 60 min at 37 degrees C reduced the subsequent binding of alpha 2-macroglobulin by 54.5%, while binding of beta-VLDL was only reduced by 14.6%. The results indicate that the recognition sites for alpha 2-macroglobulin and beta-VLDL on rat parenchymal cells do exert different properties and are therefore likely to reside on different molecules. 相似文献
15.
We have used NMR methods to determine the structure of the calcium complex of complement-like repeat 3 (CR3) from the low density lipoprotein receptor-related protein (LRP) and to examine its specific interaction with the receptor binding domain of human alpha(2)-macroglobulin. CR3 is one of eight related repeats that constitute a major ligand binding region of LRP. The structure is very similar in overall fold to homologous complement-like repeat CR8 from LRP and complement-like repeats LB1, LB2, and LB5 from the low density lipoprotein receptor and contains a short two-strand antiparallel beta-sheet, a one turn alpha-helix, and a high affinity calcium site with coordination from four carboxyls and two backbone carbonyls. The surface electrostatics and topography are, however, quite distinct from each of these other repeats. Two-dimensional (1)H,(15)N-heteronuclear single quantum coherence spectra provide evidence for a specific, though relatively weak (K(d) approximately 140 microM), interaction between CR3 and human alpha2-macroglobulin receptor binding domain that involves a contiguous patch of surface residues in the central region of CR3. This specific interaction is consistent with a mode of LRP binding to ligands that uses contributions from more than one domain to generate a wide array of different binding sites, each with overall high affinity. 相似文献
16.
The low density lipoprotein receptor-related protein (LRP) consists of two subunits, M(r) approximately 515,000 and 85,000. LRP is a receptor for activated alpha2-macrogobulin (alpha2M*), Pseudomonas exotoxin A, and many other proteins. We now report that ubiquitinylation of the LRP heavy chain occurred when either Pseudomonas exotoxin A or alpha2M* bound to LRP on macrophages. Ubiquitinylation was dose-dependent and maximal about 30 min after ligation of the receptor. Addition of the proteosome inhibitor MG-132 sustained the level of ubiquitin-LRP for longer time intervals in macrophages treated with either alpha2M* or Pseudomonas exotoxin A. By contrast, when receptor associated protein (RAP) bound to LRP, ubiquitinylation did not occur. While RAP is not found in the extracellular environment it binds to LRP and is believed to function as an intracellular chaperone. The presence of RAP within the cell may, therefore, contribute to the recycling of intact LRP which has ligated and internalized its ligands. 相似文献
17.
The molecular basis for binding of alpha-macroglobulin-proteinase complexes to the human two-chain 500/85-kDa (alpha/beta) alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein was analyzed. Ligand blotting experiments showed that a 40-kDa protein, present in the affinity-purified alpha 2MR preparation, is bound to the alpha 2MR alpha-chain and released by heparin. Removal of the 40-kDa protein resulted in a 3-5-fold increase in binding of alpha 2M-trypsin. Nitrocellulose-immobilized pure two-chain alpha 2MR was incubated with human alpha 2M-trypsin, containing four identical subunits, and two monovalent ligands: rat alpha 1-inhibitor-3-chymotrypsin and the 18-kDa receptor binding fragment of the alpha 2M subunit. Binding of alpha 2M-trypsin to the alpha-chain of immobilized alpha 2MR was composed of a high (Kd = 40 pM at 4 degrees C) and a low (Kd = 2 nM) affinity component. alpha 1-Inhibitor-3-chymotrypsin bound to the same sites but with one component (Kd = 0.4 nM). Competition-inhibition experiments and dissociation experiments, using ligands with different valences, as well as experiments with alpha 2MR immobilized at different densities, led to the following model. The low (Kd = 2 nM) affinity of alpha 2M-proteinase is prevalent when only one of the four domains binds to alpha 2MR, i.e. when the receptor density is low or when neighboring receptors are occupied. The high (Kd = 40 pM) affinity is achieved by binding of at least two domains to adjacent receptors. 相似文献
18.
Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein 总被引:30,自引:0,他引:30
R C Kowal J Herz K H Weisgraber R W Mahley M S Brown J L Goldstein 《The Journal of biological chemistry》1990,265(18):10771-10779
The low density lipoprotein receptor-related protein (LRP) from rat liver membranes binds apoprotein E (apoE)-enriched rabbit beta-migrating very low density lipoproteins (beta-VLDL) in a ligand blotting assay on nitrocellulose membranes. Binding was markedly activated when the beta-VLDL was preincubated with recombinant human apoE-3, native human apoE-3 or E-4, or native rabbit apoE. Human apoE-2, which binds poorly (1-2% of apo E-3 binding) to low density lipoprotein receptors, was approximately 40% as effective as apoE-3 or apoE-4 in binding to LRP. Stimulation of apoE-dependent binding to LRP was blocked by the inclusion of a mixture of human apoC proteins, but not apoA-I or A-II, in the preincubation reaction. High concentrations of apoE did not overcome the apoC inhibition. The effects of apoE and apoC on the ligand blotting assay were paralleled by similar effects in the ability of beta-VLDL to stimulate cholesteryl ester synthesis in mutant human fibroblasts that lack low density lipoprotein receptors. These properties of LRP are consistent with the known effects of apoE and apoC on uptake of chylomicron and very low density lipoprotein remnants in the liver and raise the possibility that LRP functions as a receptor for apoE-enriched forms of these lipoproteins in intact animals. 相似文献
19.
L Krimbou M Marcil J Davignon J Genest 《The Journal of biological chemistry》2001,276(35):33241-33248
The reaction of lecithin:cholesterol acyltransferase (LCAT) with high density lipoproteins (HDL) is of critical importance in reverse cholesterol transport, but the structural and functional pathways involved in the regulation of LCAT have not been established. We present evidence for the direct binding of LCAT to alpha(2)-macroglobulin (alpha(2)M) in human plasma to form a complex 18.5 nm in diameter. Forty percent of plasma LCAT-HDL was associated with alpha(2)M; moreover, most of the LCAT in cerebrospinal fluid and in the medium of cultured human hepatoma cell line was associated with alpha(2)M. Purified recombinant human LCAT (rLCAT) labeled with (125)I bound to native and methylamine-activated alpha(2)M (alpha(2)M-MA) in vitro in a time- and concentration-dependent manner, and this binding did not depend on the presence of lipid. rLCAT bound to alpha(2)M-MA with greater affinity than to alpha(2)M. Furthermore, rLCAT did not activate alpha(2)M as phosphatidylcholine-specific phospholipase C does. Reconstituted HDL particles (LpA-I) inhibited the binding of rLCAT to alpha(2)M more efficiently than native HDL(3) did. LCAT associated with alpha(2)M was enzymatically inactive under both endogenous and exogenous assay conditions. Purified rLCAT alone did not bind to low density lipoprotein receptor-related protein (LRP) as lipoprotein lipase (LPL) does; however, when rLCAT was combined with alpha(2)M-MA to form a complex, binding, internalization, and degradation of rLCAT took place in LRP-expressing cells (LRP (+/+)) but not in cells deficient in LRP (LRP (-/-)). It is concluded that the binding of LCAT to alpha(2)M inhibits its enzymatic activity. Furthermore, the finding supports the possibility that the LRP receptor can act in vivo to mediate clearance of the LCAT-alpha(2)M complex and may significantly influence the bioavailability of LCAT. 相似文献
20.
Brandan E Retamal C Cabello-Verrugio C Marzolo MP 《The Journal of biological chemistry》2006,281(42):31562-31571
Decorin is a small leucine-rich proteoglycan that modulates the activity of transforming growth factor type beta and other growth factors and thereby influences the processes of proliferation and differentiation in a wide array of physiological and pathological reactions. Hence, understanding the regulatory mechanisms of decorin activity has broad implications. Here we report that the extracellular levels of decorin are controlled by receptor-mediated catabolism, involving the low density lipoprotein receptor family member, low density lipoprotein receptor-related protein (LRP). We show that decorin is endocytosed and degraded by C2C12 myoblast cells and that both processes are blocked by suppressing LRP expression using short interfering RNA. The same occurs with CHO cells, but not with CHO cells genetically deficient in LRP. Finally, we show that LRP-null CHO cells, transfected to express mini-LRP polypeptides containing either the second or fourth LRP ligand-binding domains, carry out decorin endocytosis and lysosomal degradation. These findings point to LRP-mediated catabolism as a new control pathway for the biological activities of decorin, specifically for its ability to influence extracellular matrix signaling. 相似文献