首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective innate and adaptive immune responses are essential for the control of hepatitis C virus (HCV) infection. Indeed, elimination of HCV during acute infection correlates with an early induction of innate and a delayed induction of adaptive immune responses. However, in the majority of acutely HCV-infected individuals, these responses are insufficient to clear the virus and persistence develops. In recent years, different mechanisms responsible for the failure of innate and adaptive immune responses have been identified. These include the proteolytic cleavage of molecules playing key roles in the induction of the interferon response, manipulation of interferon-induced effector proteins, interference with CD8+ T-cell function or immune escape in T- and B-cell epitopes. In this review, we discuss the possible roles of innate and adaptive immune responses in HCV clearance and the different evasion strategies used by the virus to escape these immune responses.  相似文献   

2.
DNA疫苗能够诱导机体产生特异的细胞免疫和体液免疫反应,在肿瘤和感染性疾病的疫苗开发中显示出巨大的潜能。以HIV-1核心蛋白P24为抗原基因,构建pVAX1-p24 DNA,经Western blotting和动物活体成像检测证明,pVAX1 DNA携带的外源基因可以在293T 细胞和小鼠肌肉组织有效表达。采用不同的免疫策略免疫BALB/c小鼠 (DNA/DNA,DNA/Protein),实验结果表明:pVAX1-p24单独免疫BALB/c小鼠,可诱导明显的体液免疫及细胞免疫反应;pVAX1-p24与P24蛋白联合免疫诱导的体液免疫反应高于pVAX1-p24单独免疫,所获得的抗体滴度是单独免疫的7.3~8.0倍,但细胞免疫反应则不及单独免疫组。研究结果表明采取不同的免疫策略可以诱导产生不同的免疫反应,根据具体情况调整免疫策略将获得更好的免疫效果。这些研究为艾滋病疫苗的研发提供了实验依据。  相似文献   

3.
The nature of the pathogen-host relationship is recognized as being a dynamic coevolutionary process where the immune system has required ongoing adaptation and improvement to combat infection. Under survival pressure from sophisticated immune responses, adaptive processes for microbes, including viruses, have manifested as immune evasion strategies. This paper proposes a theory that virus immune evasion can be broadly classified into 'acquisition' or 'erroneous replication' strategies. Acquisition strategies are characteristic of large genome dsDNA viruses, which (i) replicate in the cell nucleus; (ii) have acquired host genes that can be used to directly manipulate responses to infection; (iii) are often latent for the lifetime of the host; and (iv) have little or no serious impact on health. Alternatively, erroneous replication strategies are characteristic of small genome RNA viruses, which are recognized as being the cause of many serious diseases in humans. It is proposed that this propensity for disease is due to the cytoplasmic site of replication and truncated temporal relationship with the host, which has limited or removed the evolutionary opportunity for RNA viruses to have acquired host genes. This has resulted in RNA viruses relying on error-prone replication strategies which, while allowing survival and persistence, are more likely to lead to disease due to the lack of direct viral control over potentially host-deleterious inflammatory and immune responses to infection.  相似文献   

4.
Profound alterations in humoral and cellular immune responses are a hallmark of aging, and understanding the immunobiology of aging is key to the success of preventive vaccination strategies. With aging, while recall or memory responses to influenza viral antigens for the most part remained unaltered, primary immune responses are severely impaired. The impaired primary responses are partly due to a lack of costimulation, as providing costimulation at the time of induction of primary immune responses against influenza virus vaccine partially reversed aged-related immune dysfunction and conferred enhanced protection. Inclusion of immunomodulators that up-regulate the expression of costimulatory molecules must be considered to improve the efficacy of vaccination in the elderly, particularly to novel immunogens.  相似文献   

5.
6.
A variety of DNA vaccine prime and recombinant viral boost immunization strategies have been developed to enhance immune responses in humans, but inherent limitations to these strategies exist. There is still an overwhelming need to develop safe and effective approaches that raise broad humoral and T cell-mediated immune responses systemically and on mucosal surfaces. We have developed a novel mucosal immunization regimen that precludes the use of viral vectors yet induces potent T cell responses. Using hepatitis B surface Ag (HBsAg), we observed that vaccination of BALB/c mice with an i.m. HBsAg-DNA vaccine prime followed by an intranasal boost with HBsAg protein encapsulated in biologically inert liposomes enhanced humoral and T cell immune responses, particularly on mucosal surfaces. Intranasal live virus challenge with a recombinant vaccinia virus expressing HBsAg revealed a correlation between T cell immune responses and protection of immunized mice. A shortened immunization protocol was developed that was successful in both adult and neonatal mice. These results support the conclusion that this new approach is capable of generating a Th-type-1-biased, broad spectrum immune response, specifically at mucosal surfaces. The success of this design may provide a safe and effective vaccination alternative for human use.  相似文献   

7.
Human reproductive tracts represent components of the mucosal immune system with unique features. Although secretory IgA is present, IgG is more abundant, and typical mucosa-associated lymphoid tissue for generating common mucosal immune responses is absent. Antibody responses to genital infections or to locally applied vaccines are usually modest, but alternative strategies for eliciting genital tract antibodies are being developed.  相似文献   

8.
Herpesviruses have evolved numerous strategies to subvert host immune responses so they can coexist with their host species. These viruses 'co-opt' host genes for entry into host cells and then express immunomodulatory genes, including mimics of members of the tumour-necrosis factor (TNF) superfamily, that initiate and alter host-cell signalling pathways. TNF superfamily members have crucial roles in controlling herpesvirus infection by mediating the direct killing of infected cells and by enhancing immune responses. Despite these strong immune responses, herpesviruses persist in a latent form, which suggests a dynamic relationship between the host immune system and the virus that results in a balance between host survival and viral control.  相似文献   

9.
Hepatitis B virus (HBV) infection is still a worldwide health problem; however, the current antiviral therapies for chronic hepatitis B are limited in efficacy. The outcome of HBV infection is thought to be the result of complex interactions between the HBV and the host immune system. While the role of the adaptive immune responses in the resolution of HBV infection has been well characterized, the contribution of innate immune mechanisms remains elusive until recent evidence implicates that HBV appears to activate the innate immune response and this response is important for controlling HBV infection. Here, we review our current understanding of innate immune responses to HBV infection and the multifaceted evasion by the virus and discuss the potential strategies to combat chronic HBV infection via induction and restoration of host innate antiviral responses.  相似文献   

10.
Many potential HIV vaccine strategies are being explored in both animal model and human settings. The success of any vaccine relies on relevant antigenic determinants being presented to the immune system for the activation of broad and long-lasting immunity. Effective immunity against HIV infection will likely require both the cellular and humoral arms of the immune system, where HIV-specific killer cells eradicate infected targets and neutralizing antibody responses contribute by preventing the initial infection of host cells. As the most potent antigen presenting cell of the immune system, the dendritic cell (DC) orchestrates the activation of adaptive immune responses as well as contributing to the early innate responses to a pathogen, which may also aid in the initial control of infection. It follows therefore, that the efficiency of a vaccine antigen would be greatly enhanced if targeted to the appropriate DCs to ensure optimal presentation to and subsequently activation of the immune system. This review will discuss (i) the current status of DC biology, covering distinct DC subsets and stages of activation and how these influence the types of immune responses that are induced, (ii) how DCs can be exploited to improve the efficacy of HIV vaccine strategies currently under investigation, (iii) what has been learned from in vivo model systems using DCs, and (iv) future considerations to advance HIV vaccinology.  相似文献   

11.
Hepatitis B virus(HBV) infection is still a worldwide health problem;however,the current antiviral therapies for chronic hepatitis B are limited in efficacy.The outcome of HBV infection is thought to be the result of complex interactions between the HBV and the host immune system.While the role of the adaptive immune responses in the resolution of HBV infection has been well characterized,the contribution of innate immune mechanisms remains elusive until recent evidence implicates that HBV appears to activate the innate immune response and this response is important for controlling HBV infection.Here,we review our current understanding of innate immune responses to HBV infection and the multifaceted evasion by the virus and discuss the potential strategies to combat chronic HBV infection via induction and restoration of host innate antiviral responses.  相似文献   

12.
An increased understanding of host immune responses to Cryptosporidium parvum which are responsible for clearance of primary infection and resistance to reinfection, and characterization of the parasite molecules to which they are directed, are essential for discovery of effective active and passive immunization strategies against cryptosporidiosis. In this article, recent advances in knowledge of humoral and cellular immune responses to C. parvum, their antigen specificities, and mechanisms of protection are briefly reviewed.  相似文献   

13.
Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion.  相似文献   

14.
Recent decades have witnessed the revolutionary development of cancer immunotherapies, which boost cancer‐specific immune responses for long‐term tumor regression. However, immunotherapy still has limitations, including off‐target side effects, long processing times and limited patient responses. These disadvantages of current immunotherapy are being addressed by improving our understanding of the immune system, as well as by establishing combinational approaches. Advanced biomaterials and gene delivery systems overcome some of these delivery issues, harnessing adverse effects and amplifying immunomodulatory effects, and are superior to standard formulations with respect to eliciting antitumor immunity. Nucleic acid‐based nanostructures have diverse functions, ranging from gene expression and gene regulation to pro‐inflammatory effects, as well as the ability to specifically bind different molecules. A brief overview is provided of the recent advances in the non‐viral gene delivery methods that are being used to activate cancer‐specific immune responses. Furthermore, the tumor microenvironment‐responsive synergistic strategies that modulate the immune response by targeting various signaling pathways are discussed. Nanoparticle‐based non‐viral gene delivery strategies have great potential to be implemented in the clinic for cancer immunotherapy.  相似文献   

15.
Caenorhabditis elegans has been used for over a decade to characterize signaling cascades controlling innate immune responses. However, what initiates these responses in the worm has remained elusive. To gain a better understanding of the initiating events we delineated genome-wide immune responses to the bacterial pathogen Pseudomonas aeruginosa in worms heavily-colonized by the pathogen versus worms visibly not colonized. We found that infection responses in both groups were identical, suggesting that immune responses were not correlated with colonization and its associated damage. Quantitative RT-PCR measurements further showed that pathogen secreted factors were not able to induce an immune response, but exposure to a non-pathogenic Pseudomonas species was. These findings raise the possibility that the C.elegans immune response is initiated by recognition of microbe-associated molecular patterns. In the absence of orthologs of known pattern recognition receptors, C. elegans may rely on novel mechanisms, thus holding the potential to advance our understanding of evolutionarily conserved strategies for pathogen recognition.  相似文献   

16.
DNA vaccines have been successful in eliciting potent immune responses in mice. Their efficiency, however, is restricted in larger animals. One reason for the limited performance of the DNA vaccines is the lack of molecular strategies to enhance immune responses. Additionally, genes directly cloned from pathogenic organisms may not be efficiently translated in a heterologous host expression system as a consequence of codon bias. To evaluate the influence of codon optimization on the immune response, we elected to use the Tat antigens of human immunodeficiency virus type 1 (HIV-1) (subtype C) and HIV-2, as these viral antigens are poorly immunogenic in natural infection and in experimental immunization and they are functionally important in viral infectivity and pathogenesis. Substituting codons that are optimally used in the mammalian system, we synthetically assembled Tat genes and compared them with the wild-type counterparts in two different mouse strains. Codon-optimized Tat genes induced qualitatively and quantitatively superior immune responses as measured in a T-cell proliferation assay, enzyme-linked immunospot assay, and chromium release assay. Importantly, while the wild-type genes promoted a mixed Th1-Th2-type cytokine profile, the codon-optimized genes induced a predominantly Th1 profile. Using a pepscan strategy, we mapped an immunodominant T-helper epitope to the core and basic domains of HIV-1 Tat. We also identified cross-clade immune responses between HIV-1 subtype B and C Tat proteins mapped to this T-helper epitope. Developing molecular strategies to optimize the immunogenicity of DNA vaccines is critical for inducing strong immune responses, especially to antigens like Tat. Our identification of a highly conserved T-helper epitope in the first exon of HIV-1 Tat of subtype C and the demonstration of a cross-clade immune response between subtypes B and C are important for a more rational design of an HIV vaccine.  相似文献   

17.
Understanding how wild immune variation covaries with other traits can reveal how costs and trade‐offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality, or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three‐spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short‐lived, two long‐lived and an anadromous population using qPCR to quantify current immune profile and RAD‐seq data to study the distribution of immune variants within our assay genes and across the genome. Short‐lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population‐level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene‐based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model.  相似文献   

18.
Mucosal administration of Ags induces specific Abs in external secretions and systemic unresponsiveness termed oral or mucosal tolerance. The dominant response depends on the species studied, the nature, dose, frequency, route of Ag application, and the use of adjuvants. The temporal sequence of Ag exposure determines the quality of the ensuing immune response; although initial mucosal Ag exposure results in systemic T cell hyporesponsiveness, pre-existing systemic responses are refractory to the tolerizing effects of mucosal Ag encounter. Mucosal and systemic humoral responses may be induced concomitantly with diminished systemic T cell responses, thereby permitting Ab-mediated containment of mucosal Ags without stimulation of the systemic immune compartment. B cell Ig isotype switching and differentiation toward IgA production share common regulatory mechanisms with the suppression of T cells. Optimization of mucosal vaccination strategies has the potential for enhancing protective immune responses and suppressing systemic responses to autoantigens desirable for the treatment of autoimmune diseases.  相似文献   

19.
The contribution of VIP immune functions to the regulation of homeostasis and health is well known. Modulation of immune responses through new therapeutics is one of the main goals of physicians and scientists seeking to control inflammatory/autoimmune diseases in humans. Initial therapeutic strategies targeted adaptive immune responses; discovery of Toll-like receptors (TLR) has widened the horizon to include targeting the innate immune system. In this review we have summarized recent information about VIP modulation of TLR function, and we suggest that VIP represents a new therapeutic option in the management of several pathologies.  相似文献   

20.
Heat shock proteins HSP70 and GP96: structural insights   总被引:3,自引:0,他引:3  
Several heat shock proteins (HSPs) act as potent adjuvants for eliciting anti-tumor immunity. HSP-based tumor vaccine strategies have been highly successful in animal models and are undergoing testing in clinical trials. It is generally accepted that HSPs, functioning as chaperones for tumor antigens, elicit tumor-specific adaptive immune responses. HSPs also appear to induce innate immune responses in an antigen-independent fashion. Innate responses generated by HSPs may contribute to anti-tumor immunity. Immunologically active chaperones with anti-tumor activity are referred to as “immunochaperones”. Here, we review the studies that address the role of structural domains or regions of the immunochaperones HSP70 and GP96 that may be involved in the induction of adaptive or innate immune responses. This article forms part of the Symposium in Writing “Thermal stress-related modulation of tumor cell physiology and immune responses”, edited by Elfriede Noessner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号