首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weber C  Schmid V 《Tissue & cell》1985,17(6):811-822
The ultrastructure and the histochemistry of the fibrous system in the mesogloeal extracellular matrix (ECM) of two hydromedusae (Polyorchis penicillatus and Aglanlha digitale) has been examined. There is a fundamental difference in the architecture of the fibrous system between the two species. In Polyorchis, 60-150 A thick, striated fibrils with periodicities of 60-65 A form a three-dimensional network which fills in the entire ECM of outer and inner mesogloea. In the outer mesogloea vertical fibres (up to 1.8 mum in diameter) penetrate the threedimensional network and branch near the exumbrellar and subumbrellar side. These branches impinge on a dense matrix covering the exumbrellar and subumbrellar surface. In Aglantha the branches of thick vertical fibres anchor at the subumbrellar side in a dense plexus (0.2-0.3 mum in thickness) which consists of two types of fibrils (35-40 and 80-100 nm in diameter). Towards the exumbrellar side the vertical fibres branch and intermingle with a meshwork of non-striated fibrils with uniform diameter (35-40 nm). These fibrils form a laminated structure (about 1 mum in thickness) so that fibrils of each layer course in the same direction but fibrils of adjacent layers run perpendicularly to each other. The banded pattern with periodicities of 600-640 A observed in the electron microscope and by histochemical methods confirm the thick vertical fibres and their branches to be a collagen. There is also strong evidence that the laminated structure in Aglantha represents layers of collagen fibrils.  相似文献   

2.
We have isolated an integrin-beta and -alpha subunit from Podocoryne carnea (Cnidaria, Hydrozoa) and studied their expression in the life-cycle and during cell migration, in vitro transdifferentiation and regeneration. Comparison of the integrin expression pattern with a Podocoryne talin homologue by RT-PCR demonstrates that all three genes are maternal messages and continuously expressed in the life-cycle, in medusa development and in all medusae tissues. In situ hybridisation experiments confirm co-expression of both integrin subunits in the different life-stages. Integrin expression was furthermore studied in isolated striated muscle induced to transdifferentiate to new cell types, or grafted on ECM where the muscle adheres and migrates. Integrin expression was maintained continuously throughout both processes. These results suggest that in Podocoryne carnea processes such as cell migration and differentiation are not controlled by up- or downregulation of alternative integrin subunits, but by a single integrin heterodimer which activates different downstream signalling cascades.  相似文献   

3.
4.
A new, relatively simple method for determining the kinematic properties of jellyfish is presented. The bell movement of the scyphomedusa (Aurelia sp.) during its pulsation cycle was analysed using computer-aided visualization. Sequences of video images of individual Aurelia in a large aquarium were taken using a standard video camera. The images were then processed to obtain time series of the relative positions of selected points on the surface of the medusa’s bell. The duration of the bell relaxation was longer than that of the bell contraction, thereby confirming published results. In addition, the area of the exumbrellar surface of Aurelia increased during bell relaxation by more than 1.3-times that of the exumbrellar surface area during the maximum contraction of the bell. The volume change during the bell pulsation cycle was also measured using the same visualization method. Significant changes, of up to 50%, in the subumbrellar cavity volume were revealed while, in contrast, the volume between the exumbrellar and subumbrellar surfaces generally remained unchanged during the entire pulsation cycle of the bell. Comparison of the time series of the exumbrellar surface area and of the subumbrellar cavity volume indicated that the change of volume takes place before the change of the surface area of the bell. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

5.
Andreas Sievers 《Planta》1968,83(1):49-52
Summary The outer epidermal wall of the podium of the trigger hair of Dionaea muscipula reveals an unusual ultrastructure under the electron microscope. The cuticular layer is penetrated by numerous radially arranged fibrils of about 2 nm in diameter inserting in a fibrillar network beneath the cutinized part of the wall. Both the fibrils and the fibrillar network are heavily stained after treatment with lead citrate. Possibly these specific wall structures make the podium elastic and enable it to undergo repeated bendings.  相似文献   

6.
The composition and concentration of elements, in particular those of metallic cations, present in the intracapsular matrix and the wall of nematocysts of various cnidarian species have been recorded by means of X-ray microanalysis performed on 100nm thick cryosections. The predominant cation detected in the nematocyst matrix of the hydrozoan Podocoryne carnea (medusa), the scyphozoan Aurelia aurita (scyphopolyp) and the anthozoan Calliactis parasitica (tentacles and acontia) is K(+). Mg(2+) prevails in tentacular cysts of Anthopleura elegantissima, Actinia equina and Anemonia viridis, whereas, the acrorhagial cysts of A. elegantissima and A. equina contain Ca(2+) instead of Mg(2+). The acrorhagial cysts of A. viridis contain Mg(2+) like those of the tentacles. In the tentacular nematocysts of Podocoryne carnea polyps (Hydrozoa) on the other hand ambiguous element contents were found indicating that the cysts of this species has no preference for a particular cation. The high values of sulfur recorded in the matrix and particularly the wall of all the cysts are reflecting the presence of numerous protein disulfide bonds within the structural components (wall, shaft, tubule) of the nematocysts.  相似文献   

7.
Schmid  V.  Bally  A.  Beck  K.  Haller  M.  Schlage  W. K.  Weber  Ch. 《Hydrobiologia》1991,216(1):3-10
The outer mesoglea (extracellular matrix; ECM) of hydrozoan jellyfish was found to contain a species-specific meshwork of striated fibers of different diameters. In the mesoglea, molecules were identified which exhibit several features of well known vertebrate ECM: a laminin-like molecule which appears cross-shaped on electronmicrographs, a fibronectin-like molecule (both detectable by their immunoreactivity at the exumbrella side) and a species-specific collagen consisting of 3 different -chains of which at least 2 can be decorated with con A. The -chains are linked by disulfide bridges. Acetic acid extraction of the mesoglea and subsequent salt precipitation yields fibrils which appear banded in the electron microscope and support species-specific adhesion and spreading of isolated tissue. These precipitated fibrils are mainly composed of the disulfide-linked collagen.  相似文献   

8.
9.
Tissue homeostasis depends on a balance of synthesis and degradation of constituent proteins, with turnover of a given protein potentially regulated by its use. Extracellular matrix (ECM) is predominantly composed of fibrillar collagens that exhibit tension-sensitive degradation, which we review here at different levels of hierarchy. Past experiments and recent proteomics measurements together suggest that mechanical strain stabilizes collagen against enzymatic degradation at the scale of tissues and fibrils whereas isolated collagen molecules exhibit a biphasic behavior that depends on load magnitude. Within a Michaelis-Menten framework, collagenases at constant concentration effectively exhibit a low activity on substrate fibrils when the fibrils are strained by tension. Mechanisms of such mechanosensitive regulation are surveyed together with relevant interactions of collagen fibrils with cells.  相似文献   

10.
T Kodaka  A Hirayama  M Abe  K Miake 《Acta anatomica》1992,145(3):181-188
EDTA-insoluble organic structures of the hypercalcified peritubular matrix (PM) in horse dentine were observed by scanning electron microscopy. The PM was enveloped in double cylindrical structures composed of fibrillar sheaths in the inner and outer peripheries. Between the outer fibrillar sheath and intrinsic fibrils of the intertubular matrix, a calcified cementing membrane existed. Within the PM, warped cone-shaped structures of fibrillar sheaths, overlapping at intervals of 4-6 microns and semiconcentrically surrounding the dentinal tubule, extended from the inner fibrillar towards the outer fibrillar sheath. The cone-shaped fibrillar sheaths following the inner and outer fibrillar sheaths were identified as the incremental lines of the PM. Most of these fibrils may be collagen although it could not be confirmed, whereas non-collagenous organic materials in the lateral branches of the dentinal tubule are radially arranged in the PM. These EDTA-insoluble structures were three-dimensionally illustrated using an image-analysing system.  相似文献   

11.
Production of alpha-1-antitrypsin (AAT) by human monocytes is an important factor in controlling tissue damage by proteases in the microenvironment of inflammation. Increases, of four- to eightfold, in numbers of macrophages and levels of AAT and its cleavage fragments have been found in various inflammatory loci. We have found that the C-terminal peptide (C-36) of AAT, produced by specific proteinase cleavage when added in its fibrillar form at concentrations >/=5 microM to monocytes in culture for 24 h, significantly increases low density lipoprotein (LDL) binding and uptake, up-regulates levels of LDL receptors and also induces proinflammatory cytokine (interleukin-1, interleukin-6 and tumour necrosis factor alpha) production and glutathione reductase activity. Because it is known that various cells selectively internalize surface receptors and their ligands through receptor-mediated endocytosis via clathrin-coated pits, we tested whether antibodies raised against the clathrin heavy chain would block the effects of the fibrillar form of C-36 on human monocytes in culture. Addition of excess anti-(clathrin HC) with 10 microM fibrillar C-36 diminished the stimulatory effects of the latter on LDL binding, uptake and LDL receptor levels. In contrast, however, in the presence of anti-(clathrin HC), the potentially cytotoxic effects of fibrils, such as induction of cytokines, free radicals and cytosolic activity of cathepsin D, were much greater than those observed when cells were treated with fibrils alone. These results suggest that endocytosis is the pathway by which C-36 fibrils upregulate LDL receptors, and may be the natural mechanism for fibril clearance. We infer that human monocytes clear C-36 fibrils by a clathrin-dependent pathway, presumably endocytotic, and that loss of this pathway amplifies the cytotoxic effects of the fibrils by increasing their availability to other specific or nonspecific sites through which they exert their cytotoxic effects.  相似文献   

12.
Summary 1. The structure and function of the locomotory system of the anthomedusanPolyorchis montereyensis Skogsberg were studied in detail. Anatomical investigations were carried out primarily on fresh or formalin fixed specimens; histology was done on specimens fixed in Bouin's fluid. Functional analyses were based largely on photography and cinematography.2. Swimming inP. montereyensis involves the alternating antagonistic action of the subumbrellar swimming muscles and the elastic mesoglea.3. The swimming muscle consists of striated contractile elements arranged circularly in four discontinuous subumbrellar sheets and a sheet on the subumbrellar side of the velum. There is also a sheet of radially arranged fibers on the exumbrellar side of the velum. The four subumbrellar sheets are anchored to the bell along the perand interradii.4. The mesogleal skeleton consists of five components: (a) the matrix of the bell mesoglea, (b) optically visible fibers that traverse the bell from gastrodermal lamella to exumbrella, (c) the basement membrane or supporting lamella, (d) a system of joints, and (e) the velar mesoglea.5. The morphology, orientation, and distribution of the mesogleal fibers suggest that their major role is maintaining the radial integrity of the bell during deformation. The amount of stretch in a region of the bell wall during contraction is inversely proportional to the number of fibers per unit area there. In regions of the bell which are not deformed during contraction fibers are sparse or absent.6. Mesogleal volume remains constant during swimming. Locally the mesoglea is subjected to forces of stretch and compression, but the critical element in narrowing the bell involves bending or folding the mesoglea around a series of structural joints. The fulcrum of these joints is anchored to the exumbrella by concentrations of mesogleal fibers. The joints consist of eight adradial regions of highly deformable mesoglea lacking visible fibers. The regions are triangular in cross section and are separated from the remainder of the mesoglea (98–99 % of the total) by the gastrodermal lamella. A circular apical joint is also present.7. Sequential changes in shape and position of the bell relative to a fixed grid during contraction and recovery were measured in order to determine such parameters of swimming as rate of contraction, rate of expulsion of water, change in bell velocity during contraction and recovery, momentum, etc.8. The function of the velum was determined by cinematographic analysis of swimming animals both before and after removal of the velum. In normal swimming the velum serves mainly to constrict the aperture of the bell, thus increasing the velocity of expelled water, and hence increasing the force driving the medusa foward. Medusae swam with a greatly decreased velocity after velum removal.9. Turning is accomplished primarily by asymmetrical contraction of the exumbrellar velar radial muscles, whereby the velar aperture is displaced to one side, water is expelled obliquely, and the bell turns toward that same side. The ability to turn was lost after velum removal.10. Studies of the relationship between individual size and the various parameters of swimming inP. montereyensis show that: (a) the duration of the contraction phase of the swimming beat is roughly proportional to the square root of the subumbrellar circumference (or bell height); (b) smaller individuals swim faster relative to their bell height than do larger ones; (c) the velum is relatively better developed in small animals and plays a proportionately more important role during swimming.
Struktur und Funktion des lokomotorischen Systems vonPolyorchis montereyensis (Cnidaria, Hydrozoa)
Kurzfassung Mit Hilfe histologischer und kinematographischer Methoden wurden Bau und Funktion des lokomotorischen Systems der AnthomedusePolyorchis montereyensis Skogsberg analysiert. Die Schwimmbewegungen resultieren aus der antagonistischen Wirkung der Muskulatur der Subumbrella und der elastischen Mesogloea. Struktur, Anordnung, Verteilung und Verankerung der Muskelzellen werden beschrieben. Die Körperschicht der Mesogloea besteht aus 5 Komponenten mit Skelettfunktion: der Matrix der Schirmmesogloea, einem System von Muskelfasern, der Stützlamelle, acht adradialen Verbindungssträngen von stark deformierbarer, fibrillenloser Mesogloea und der Mesogloea des Velums. Die Fribrillen und Verbindungsstränge der Mesogloea bewirken, daß die Schirmglocke während der Kontraktion deformiert werden kann. Die Funktion des Velums sowie die kontinuierlichen Veränderungen der Glocke in bezug auf Form und Lage während des Schwimmvorgangs, insbesondere die Geschwindigkeit der Kontraktion, des Wasserausstoßes und der Fortbewegung bei Individuen verschiedener Größe, wurden eingehend untersucht. Kleinere Medusen schwimmen relativ schneller als größere, was hauptsächlich auf stärkere Kontraktionen des Velums zurückzuführen ist.
  相似文献   

13.
14.
《The Journal of cell biology》1985,101(5):1790-1798
Extracellular matrix (ECM), prepared from chick embryo fibroblasts, contains fibronectin as the major structural protein along with collagen and other polypeptides as less abundant protein components. When Rous sarcoma virus-transformed chick embryo fibroblasts are cultured on the ECM in the presence of the tumor promoter tetradecanoyl phorbol acetate, the transformed cells lose their characteristic rounded morphology and align on and within the ECM fibrillar network. This restrictive aspect of ECM is only temporary, however, and with time (24-72 h) the transformed cells progressively degrade the ECM fibers and resume their rounded appearance. The matrix degradation can be monitored by employing biosynthetically radiolabeled ECM. The addition of purified chicken plasminogen to the Rous sarcoma virus- transformed chick embryo fibroblast cultures enhances the rate and extent of ECM degradation, due to the elevated levels in the transformed cultures of plasminogen activator. Plasminogen-dependent and -independent degradation of ECM has been characterized with regard to sensitivity to various natural and synthetic protease inhibitors and to the requirement of cell/ECM contact. Plasminogen-dependent degradation of ECM occurs rapidly when ECM and cells are in contact or separated, whereas plasminogen-independent degradation is greatly reduced when ECM and cells are separated, which suggests that cell surface-associated proteolytic enzymes are involved. A possible role in ECM degradation has been indicated for cysteine proteases, metallo enzymes, and plasminogen activator, the latter as both a zymogen activator and a direct catalytic mediator.  相似文献   

15.
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy.  相似文献   

16.
Latent transforming growth factor-beta-binding proteins (LTBPs) are extracellular matrix (ECM) glycoproteins that play a major role in the storage of latent TGF beta in the ECM and regulate its availability. Here we show that fibronectin is critical for the incorporation of LTBP1 and transforming growth factor-beta (TGF beta) into the ECM of osteoblasts and fibroblasts. Immunolocalization studies suggested that fibronectin provides an initial scaffold that precedes and patterns LTBP1 deposition but that LTBP1 and fibronectin are later localized in separate fibrillar networks, suggesting that the initial template is lost. Treatment of fetal rat calvarial osteoblasts with a 70-kDa N-terminal fibronectin fragment that inhibits fibronectin assembly impaired incorporation of LTBP1 and TGFbeta into the ECM. Consistent with this, LTBP1 failed to assemble in embryonic fibroblasts that lack the gene for fibronectin. LTBP1 assembly was rescued by full-length fibronectin and superfibronectin, which are capable of assembly into fibronectin fibrils, but not by other fibronectin fragments, including a 160-kDa RGD-containing fragment that activates alpha5beta1 integrins. This suggests that the critical event for LTBP1 assembly is the formation of a fibronectin fibrillar network and that integrin ligation by fibronectin molecules alone is not sufficient. Not only was fibronectin essential for the initial incorporation of LTBP1 into the ECM, but the continued presence of fibronectin was required for the continued assembly of LTBP1. These studies highlight a nonredundant role for fibronectin in LTBP1 assembly into the ECM and suggest a novel role for fibronectin in regulation of TGF beta via LTBP1 interactions.  相似文献   

17.
In many bilaterian animals members of the Otx gene family are expressed in head or brain structures. Cnidarians, however, have no clearly homologous head and no distinct brain; but an Otx homolog from the jellyfish Podocoryne carnea is highly conserved in sequence and domain structure. Sequence similarities extend well beyond the homeodomain and Podocoryne Otx can be aligned over its entire length to human OTX1, OTX2, and CRX. The overall structure of Otx is better conserved from Podocoryne to deuterostomes while protostomes appear to be more derived. In contrast, functions seem to be conserved from protostomes to vertebrates but not in Podocoryne or echinoderms. Podocoryne Otx is expressed only during medusa bud formation and becomes restricted to the striated muscle of medusae. Cnidaria are the most basal animals with striated muscle. Podocoryne polyps have no striated muscle and no Otx expression; both appear only during the asexual medusa budding process. The common ancestor of all animals that gave rise to cnidarians, protostomes, and deuterostomes already had an Otx gene more similar to today's Podocoryne and human homologs than to Drosophila otd, while the head-specific function appears to have evolved only later.  相似文献   

18.
The life cycle of Podocoryne carnea (Coelenterata, Anthomedusae) shows several distinct stages which differ considerably in terms of their ecology, morphology, cellular composition, and ultrastructure. Previously these stages had even been described as separate species. Using two-dimensional gel electrophoresis and a new method of double-label autoradiography, we show here for the first time for metagenic hydrozoans that only minor differences in gene expression exist between the various life cycle stages. Our results demonstrate the high resolution power of these techniques and show that the different life stages of P. carnea remain rather similar on the protein level. Most of the prominent spots of the two-dimensional gel protein patterns are common to all stages studied. These data show that the hydrozoan life cycle and development are regulated by only minor distinctions in gene expression which possibly explains the great morphogenetic repertoire of these animals described in many studies.  相似文献   

19.
Extracellular accumulation of transthyretin (TTR) variants in the form of fibrillar amyloid deposits is the pathological hallmark of familial amyloidotic polyneuropathy (FAP). The TTR Leu55Pro variant occurs in the most aggressive forms of this disease. Inhibition of TTR wild-type (WT) and particularly TTR Leu55Pro fibril formation is of interest as a potential therapeutic strategy and requires a thorough understanding of the fibril assembly mechanism. To this end, we report on the in vitro assembly properties as observed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and quantitative scanning transmission electron microscopy (STEM) for both TTR WT fibrils produced by acidification, and TTR Leu55Pro fibrils assembled at physiological pH. The morphological features and dimensions of TTR WT and TTR Leu55Pro fibrils were similar, with up to 300 nm long, 8 nm wide fibrils being the most prominent species in both cases. Other species were evident; 4-5 nm wide fibrils, 9-10 nm wide fibrils and oligomers of various sizes. STEM mass-per-length (MPL) measurements revealed discrete fibril types with masses of 9.5 and 14.0(+/-1.4) KDa/nm for TTR WT fibrils and 13.7, 18.5 and 23.2(+/-1.5) kDa/nm for TTR Leu55Pro fibrils. These MPL values are consistent with a model in which fibrillar TTR structures are composed of two, three, four or five elementary protofilaments, with each protofilament being a vertical stack of structurally modified TTR monomers assembled with the 2.9 nm axial monomer-monomer spacing indicated by X-ray fibre diffraction data. Ex vivo TTR amyloid fibrils were examined. From their morphological appearance compared to these, the in vitro assembled TTR WT and Leu55Pro fibrils examined may represent immature fibrillar species. The in vitro system operating at physiological pH for TTR Leu55Pro and the model presented for the molecular arrangement of TTR monomers within fibrils may, therefore, describe early fibril assembly events in vivo.  相似文献   

20.
Amyloid fibrils were produced from the full-length mouse prion protein (PrP) under solvent conditions similar to those used for the generation of synthetic prions from PrP 89-230. Analysis of the ultrastructure by atomic force microscopy revealed extremely broad polymorphism in fibrils formed under a single growth condition. Fibrils varied with respect to the number of constitutive filaments and the manner in which the filaments were assembled. PrP polymerization was found to show several peculiar features: (i) the higher-order fibrils/ribbons were formed through a highly hierarchical mechanism of assembly of lower-order fibrils/ribbons; (ii) the lateral assembly proceeded stepwise; at each step, a semi-stable fibrillar species were generated, which were then able to enter the next level of assembly; (iii) the assembly of lower into higher-order fibrils occurred predominantly in a vertical dimension via stacking of ribbons on top of each other; (iv) alternative modes of lateral association co-existed under a single growth condition; (iv) the fibrillar morphology changed even within individual fibrils, illustrating that alternative modes of filament assembly are inter-convertible and thermodynamically equivalent. The most predominant fibrillar types were classified into five groups according to their height, each of which was divided in up to three subgroups according to their width. Detailed analysis of ultrastructure revealed that the fibrils of the major subtype (height 3.61(+/-0.28)nm, width 31.1(+/-2.0)nm) were composed of two ribbons, each of which was composed of two filaments. The molecular volume calculations indicated that a single PrP molecule occupied a distance of approximately 1.2 nm within a single filament. High polymorphism in fibrils generated in vitro is reminiscent of high morphological diversity of scrapie-associated fibrils isolated from scrapie brains, suggesting that polymorphism is peculiar for polymerization of PrP regardless of whether fibrils are formed in vitro or under pathological conditions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号