首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of cortisol on calcium (Ca2+) transport across cultured rainbow trout gill epithelia composed of both pavement cells (PVCs) and mitochondria-rich cells (MRCs) was examined. Under symmetrical culture conditions (L15 media apical/L15 media basolateral), cortisol had subtle effects on gill epithelial preparations. Both control and cortisol treated epithelia exhibited Ca2+ influx and efflux rates (measured radioisotopically using 45Ca) that were approximately balanced, with a slight inwardly directed net Ca2+ flux. Ussing flux ratio analysis indicated active Ca2+ transport in the inward direction across epithelia bathed symmetrically regardless of hormone treatment. In contrast, under asymmetrical conditions (freshwater apical/L15 media basolateral) control epithelia exhibited active Ca2+ transport in the outward direction (basolateral to apical) throughout experiments conducted over a 24-h period, whereas cortisol-treated preparations exhibited active transport in the inward direction (apical to basolateral) during the early stages of an asymmetrical culture period (e.g., T0–6 h) and passive transport during the later stages (e.g., T18–24 h). When soft freshwater (with tenfold lower [Ca2+]) was used for asymmetrical culture instead of freshwater, control epithelia developed outwardly directed active Ca2+ transport properties, whereas cortisol-treated preparations did not. The results of this study support a hypercalcemic role for cortisol in rainbow trout and demonstrate that treating cultured gill epithelia composed of both PVCs and MRCs with cortisol can stimulate active Ca2+ uptake under circumstances that more closely resemble natural conditions for fish gills (i.e., freshwater bathing the apical side of the epithelium).  相似文献   

2.
The objective of this study was to characterize rainbow trout (Oncorhynchus mykiss) gill epithelial cells in primary culture by evaluating their ability to maintain glutathione and glucuronide conjugating enzymes. The activity and inducibility of the phase II enzymes was investigated as a function of culture time. Glutathione S-transferase (GST) and UDP-glucuronyltransferase (UDPGT) enzyme activities were measured in freshly isolated cells and in cells cultured for 7 and 12 days. GST activity, determined with 1-chloro-2,4-dinitrobenzene, decreased gradually to 72% after 7 days and to 38% after 12 days in culture compared with freshly isolated cells. There was no significant difference between UDPGT activities in freshly isolated cells compared with cells cultured up to 12 days although a transient decrease in activity was observed at day 7. In vitro induction of the enzymes was studied using beta-naphtoflavone (BNF) and 3-methylcholanthrene (3-MC) as inducers. GST activity increased 2-fold after exposure to BNF and 1.5-fold after 3-MC exposure for 48 h in 7 days old cultures. No induction was observed in 12 days old cultures. UDPGT activity was not induced either at day 7 or 12.  相似文献   

3.
4.
This study investigated the effects of iron in the form of iron sulphate (FeSO4·7H2O), over the range 0.01–1 mM on rainbow trout primary gill cells cultured on semi-permeable membranes. The endpoints measured were cell proliferation, mucous cell numbers, area of mucus in mucous cells, ultrastructural analysis and transepithelial resistance. Regardless of the concentration, FeSO4 did not modify the apical surface of pavement cells (microridge) and mucous cells. However, at 1 mM, this metal reduced cell numbers, by inhibiting cell proliferation and causing cell death, and induced a decrease in transepithelial resistance. It is interesting to note that cell numbers were also reduced in the presence of 0.5 mM iron salt, although this reduction did not modify transepithelial resistance. FeSO4 reduced mucous cell number but did not change mucus area in mucous cells suggesting that this metal could induce a discharge of mucous cells, but mucus secretion would be total and not partial. In conclusion, our in vitro model has allowed to study some toxic effect but also resistance of gill epithelium in presence of iron.  相似文献   

5.
Two types of mitochondria-rich cells were identified in the gill epithelium of the freshwater-adapted rainbow trout, Salmo gairdneri, after selective impregnation of their tubular system with reduced osmium. A first type consisted of large cells with a poorly developed and loosely anastomosed tubular system; thus, that resembled the chloride cells commonly encountered in the gill epithelium of freshwater-adapted euryhaline fishes. A second type comprised smaller cells with an extensively developed and tightly anastomosed tubular system. These never reached the basal lamina of the gill epithelium and were adjacent to chloride cells, to which they were linked by shallow apical junctions (100-200 nm); thus, they resembled accessory cells, which are currently found in the gill epithelium of seawater-adapted fishes but are usually lacking in freshwater living fishes. Transfer of the freshwater-adapted trout into seawater induced the proliferation of the tubular system in the chloride cells and the formation of lateral plasma membrane interdigitations between accessory cells and the apical portion of the chloride cells. The length of the apical junction sealing off this extended intercellular space was reduced to 20-50 nm. The tubular system of the accessory cells was not modified. The extension of the tubular system in the chloride cells of the seawater-adapted fishes indicated that, as in most euryhaline fishes, these cells have a role in the adaptation of the rainbow trout to seawater. In contrast, the function of the presumptive accessory cells in freshwater trout remains to be established.  相似文献   

6.
7.
Glucocorticoid actions on the immune system are diverse and cell type dependent, and little is known about cell type-specific interactions and cross-talk between hormones and cytokines. In this study we have analyzed the gene expression patterns of the rainbow trout macrophage cell line RTS-11 by quantitative PCR, after exposure to combinations of cortisol plus a pro-inflammatory cytokine (e.g. recombinant trout IL-1β, IFN-γ), type I IFN or a PAMP (LPS or poly I:C). Several key genes of the inflammatory process were targetted to assess whether any modulation of their expression occurred due to the addition of cortisol to this cell line. Incubation of macrophages for 3 or 6 h with a physiological concentration of cortisol caused a decrease in expression of IL-6 and IL-8, but no significant changes were observed for the other genes examined. Co-stimulation of cortisol with the inflammatory agents resulted in a general suppression of genes related to the inflammatory response. Cortisol inhibited the up-regulation of IL-8 by all the stimulants after 3 h of co-incubation. Suppression of the up-regulation of IL-6 by rIL-1β, rIFN-γ and poly I:C, of γIP by rIFN-γ or poly I:C, and of Cox-2 by rIL-1β was seen after 6 h. In contrast, cortisol in combination with the pro-inflammatory agents has a synergistic effect on IL-10 expression, an anti-inflammatory molecule, suggesting that the activation of certain macrophage functions that lead to the resolution of inflammation occurs in fish macrophages in response to cortisol treatment.  相似文献   

8.
In rainbow trout (Oncorhynchus mykiss), selection for divergent post-stress plasma cortisol levels has yielded low (LR)- and high (HR) responsive lines, differing in behavioural and physiological aspects of stress coping. For instance, LR fish display prolonged retention of a fear response and of previously learnt routines, compared to HR fish. This study aims at investigating putative central nervous system mechanisms controlling behaviour and memory retention. The stress hormone cortisol is known to affect several aspects of cognition, including memory retention. Cortisol acts through glucocorticoid receptors 1 and 2 (GR1 and 2) and a mineralcorticoid receptor (MR), all of which are abundantly expressed in the salmonid brain. We hypothesized that different expressions of MR and GRs in LR and HR trout brains could be involved in the observed differences in cognition. We quantified the mRNA expression of GR1, GR2 and MR in different brain regions of stressed and non-stressed LR and HR trout. The expression of MR was higher in LR than in HR fish in all brain parts investigated. This could be associated with reduced anxiety and enhanced memory retention in LR fish. MR and GR1 expression was also subject to negative regulation by stress in a site-specific manner.  相似文献   

9.
10.
We indirectly tested the idea that the epithelial Ca2+ channel (ECaC) of the trout gill is regulated in an appropriate manner to adjust rates of Ca2+ uptake. This was accomplished by assessing the levels of gill ECaC mRNA and protein in fish exposed to treatments known to increase or decrease Ca2+ uptake capacity. Exposure of trout to soft water ([Ca2+]=20-30 nmol/l) for 5 days (a treatment known to increase Ca2+ uptake capacity) caused a significant increase in ECaC mRNA levels and an increase in ECaC protein expression. The inducement of hypercalcemia by infusing fish with CaCl2 (a treatment known to reduce Ca2+ uptake) was associated with a significant decrease in ECaC mRNA levels, yet protein levels were unaltered. ECaC mRNA and protein expression were increased in fish treated with the hypercalcemic hormone cortisol. Finally, exposure of trout to 48 h of hypercapnia (approximately 7.5 mmHg, a treatment known to increase Ca2+ uptake capacity) elicited an approximately 100-fold increase in the levels of ECaC mRNA and a significant increase in protein expression. Immunocytochemical analysis of the gills from hypercapnic fish suggested a marked increase in the apical expression of ECaC on pavement cells and a subpopulation of mitochondria-rich cells. The results of this study provide evidence that Ca2+ uptake rates are, in part, regulated by the numbers of apical membrane Ca2+ channels that, in turn, modulate the inward flux of Ca2+ into gill epithelial cells.  相似文献   

11.
Fluorescently labeled peanut lectin agglutinin (PNA-FITC) was used to identify a subtype of mitochondria-rich (MR) cells in the gills of freshwater rainbow trout. In situ binding of PNA-FITC was visualized by inverted fluorescence microscopy and found to bind to cells on the trailing edge of the filament epithelium as demonstrated by differential interference contrast optics. The amount of PNA-FITC binding on the filament epithelium increased with cortisol pretreatment concomitant with an increased chloride cell fractional area as demonstrated by scanning electron microscopy. Dispersed gill cells were isolated by trypsinization and separated using a discontinuous Percoll density gradient. Cells migrating to the 1.06-1.09 g/ml interface were found to be MR as demonstrated by staining with the vital mitochondrial dye 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide and transmission electron microscopy (TEM). However, only approximately 40% of the MR cells were found to bind PNA-FITC. Cortisol pretreatment increased the relative numbers of MR cells isolated from the dispersed gill cell population, but the relative proportions of PNA binding cells remained unchanged. Ultrastructural analysis of isolated cells in the TEM demonstrated that the MR cell fraction was comprised of a mixed population of chloride cells and pavement cells.  相似文献   

12.
Gill development begins on the sixth day of incubation at 10°C and is complete by 31 days (hatching). Gill arches are formed by fusion and perforation of ectoderm and endoderm across the pharyngeal wall. A primary branchial artery forms within each arch and a second branchial artery forms as a branch from its ventral end. A series of filament loop vessels forms connecting the two arteries and when several are patent a unidirectional blood flow is established via afferent (second) branchial artery, filament loop vessels to efferent (primary) branchial artery. Part of the efferent branchial artery just above its junction with the afferent branchial artery constricts and occludes. It is suggested that this change in the pattern of blood flow is dependent on differences in resistance of the two branchial arteries. A later extension of the gill ventrally is thought not to be homologous with similar regions in elasmobranchs and Acipenser.  相似文献   

13.
Summary Lectin binding and density gradient centrifugation were explored for isolating epithelial cells from trout liver. Hepatocytes exhibited preferential attachment to coverslips coated withPhaseolus vulgaris erythroagglutinin. Biliary epithelial cells attached with glycine max agglutinin; however, significant attachment of cellular debris limited the use of glycine max agglutinin. Percoll-density gradient centrifugation separated liver cells into two distinct populations with biliary cells and hepatocytes banding at densities of 1.04 and 1.09, respectively. A discontinuous gradient composed of 13% Ficoll (wt/wt) separated biliary cells from hepatocytes. The recovery of highly enriched biliary epithelial cells from trout liver using Ficoll gradients yielded approximately 8 million cells (0.1 ml packed cells) from 10 g liver. Western blot analysis demonstrated that the cytokeratin profile for extracts from biliary epithelial cell-enriched populations differ significantly from those seen with whole liver extracts or with extracts from hepatocyte-enriched populations. Ficoll-gradient purified biliary cells and hepatocytes attached to culture plates coated with trout skin extract and carried out linear incorporation of leucine into protein and thymidine into DNA for 24 h. A mixture of growth hormones (insulin, epidermal growth factor, and dexamethasone) stimulated thymidine incorporation into DNA; however, long-term culture of dividing biliary epithelial cells was not achieved. Chemical analysis of neutral and acidic glycolipids indicated that hepatocytes and biliary cells have similar glycolipid profiles with an exception in the region of GM3 mobility, which is attributable to differences in the ceramide moiety. These studies provide a starting point for further characterization of unique cell types of the trout liver that may be important in their response to toxic and carcinogenic agents.  相似文献   

14.
Epithelial cells interact directly with bacteria in the environment and play a critical role in airway defense against microbial pathogens. In this study, we examined the response of respiratory epithelial cells to infection with nontypable Haemophilus influenzae. Using an in vitro cell culture model, we found that epithelial cell monolayers released significant quantities of IL-8 and expressed increased levels of ICAM-1 mRNA and surface protein in response to H. influenzae. In contrast, levels of IL-1beta, TNF-alpha, and MHC class I were not significantly affected, suggesting preferential activation of a specific subset of epithelial genes directed toward defense against bacteria. Induction of ICAM-1 required direct bacterial interaction with the epithelial cell surface and was not reproduced by purified H. influenzae lipooligosaccharide. Consistent with a functional role for this response, induction of ICAM-1 by H. influenzae mediated increased neutrophil adherence to the epithelial cell surface. Furthermore, in an in vivo murine model of airway infection with H. influenzae, increased epithelial cell ICAM-1 expression coincided with increased chemokine levels and neutrophil recruitment in the airway. These results indicate that ICAM-1 expression on human respiratory epithelial cells is induced by epithelial cell interaction with H. influenzae and suggest that an ICAM-1-dependent mechanism can mediate neutrophil adherence to these cells independent of inflammatory mediator release by other cell types. Direct induction of specific epithelial cell genes (such as ICAM-1 and IL-8) by bacterial infection may allow for rapid and efficient innate defense in the airway.  相似文献   

15.
Summary The intestinal epithelium in the rainbow alevins at the period of initial feeding is composed of typical columnar cells with a striated border and goblet cells with mucigen droplets. The columnar epithelial cells are provided with well organized cell organelles which are found in the intestinal absorptive cells of vertebrates in general. Remarkable differences are seen in some morphological aspects of columnar epithelial cells between the antero-mid intestine and the posterior intestine. Those in the antero-mid intestine are loaded with considerable quantities of fat droplets, whereas those in the posterior intestine are characterized by containing vacuoles with less dense materials which resemble engulfed protein in general feature. No pinocytotic process is found in the former, but vigorous pinocytosis occurs in the latter. The membranous lamellar structures are developed in the mid-basal portion of the columnar epithelial cells. Those in the basal portion of the cells in the mid intestine are arranged in parallel to the longitudinal cell axis with associated groups of mitochondria.The cellular morphology of the intestinal epithelium suggests the possibility that absorption of nutrients derived from external foods occurs in the rainbow alevins still having a small yolk sac.I am grateful to Dr. Kiyomatsu Matsubara of our laboratory, Dr. Reuben Lasker of the U.S. Bureau of Commercial Fisheries, La Jolla, and Dr. Carl L. Hubbs of the Scripps Institution of Oceanography, La Jolla, for much valuable criticisms and encouragement. Thanks are due to Mr. Tomomi Watabe of the Japan Electron Optics Laboratory for his generous help.  相似文献   

16.
17.
Glucose fluxes across the gills were measured in freshwater-adapted trout (Salmo gairdneri) using an in vitro, perfused-head preparation. A large asymmetry was observed for the primary lamellar pathway, glucose permeability in the serosa-to-mucosa direction being up to 24 times greater than the permeability in the mucosa-to-serosa direction. Chloride cells appeared to possess a maximal rate of transport, or TMG, of 79 mumol/hr per 100 g. Phlorizin, phloretin and, to a lesser extent, harmaline caused an increase in the rate of glucose efflux. The results suggest that the tubulo-vesicular reticulum, into which plasma is introduced under low pressure, may be regarded as a reabsorption site for glucose in a way similar to the nephron proximal tubule. Thus, essential molecules such as glucose are removed while excess or non-essential substances are excreted into the external medium.  相似文献   

18.
Transforming growth factor beta 1 (TGF-beta 1) and insulin-like growth factor I (IGF-I) have contrasting effects on cell cycle regulation in thyroid cells and TGF-beta 1 induces a dramatic decrease in IGF-I-induced cell proliferation. The aim of the present study was to investigate the molecular mechanism of cross-talk between TGF-beta 1 and IGF-I in FRTL-5 cells. TGF-beta 1 affected IGF-I-stimulated insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation and its association with Grb2 protein. Moreover, TGF-beta 1 decreased the IGF-I-induced tyrosine phosphorylation of the adaptor protein CrkII and its association with the IGF-I receptor. These results were accompanied by TGF-beta 1 inhibition of IGF-I-stimulated mitogen-activated protein kinase phosphorylation and activation. Conversely, TGF-beta 1 did not alter IGF-I-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, IGF-I-induced tyrosine phosphorylation of Shc, and its binding to Grb2. Taken together, these findings provide a molecular basis for the growth-inhibitory action of TGF-beta 1 on the IGF-I-induced mitogenic effect.  相似文献   

19.
Summary The aluminium-formaldehyde (ALFA) histofluorescence method was used to study the innervation of the gill of the marine bivalve mollusc Mytilus edulis and the results were contrasted with those obtained with the standard formaldehyde-induced-fluorescence (FIF) method. The ALFA method produced more fluorescing structures than the FIF method, thus revealing fine branches of the branchial nerve running beneath the gill epithelium which previously remained undetected. This study demonstrates the usefulness of the ALFA histofluorescence method in the study of marine invertebrates.This study was supported in part by Grants 1506RR08171 from NIMH and 5T32GM07641 from the MARC Program of NIGMS. I wish to thank E. Aiello for thoughtful discussions of the work  相似文献   

20.
Acute lung injury (ALI) is a devastating syndrome characterized by diffuse alveolar damage, elevated airspace levels of pro-inflammatory cytokines, and flooding of the alveolar spaces with protein-rich edema fluid. Interleukin-1beta (IL-1beta) is one of the most biologically active cytokines in the distal airspaces of patients with ALI. IL-1beta has been shown to increase lung epithelial and endothelial permeability. In this study, we hypothesized that IL-1beta would decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we measured the effects of IL-1beta on transepithelial current, resistance, and sodium transport in primary cultures of alveolar epithelial type II (ATII) cells. IL-1beta significantly reduced the amiloride-sensitive fraction of the transepithelial current and sodium transport across rat ATII cell monolayers. Moreover, IL-1beta decreased basal and dexamethasone-induced epithelial sodium channel alpha-subunit (alpha ENaC) mRNA levels and total and cell-surface protein expression. The inhibitory effect of IL-1beta on alpha ENaC expression was mediated by the activation of p38 MAPK in both rat and human ATII cells and was independent of the activation of alpha v beta6 integrin and transforming growth factor-beta. These results indicate that IL-1beta may contribute to alveolar edema in ALI by reducing distal lung epithelial sodium absorption. This reduction in ion and water transport across the lung epithelium is in large part due to a decrease in alpha ENaC expression through p38 MAPK-dependent inhibition of alpha ENaC promoter activity and to an alteration in ENaC trafficking to the apical membrane of ATII cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号