首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Liu W  Chen R  Chen M  Zhang H  Peng M  Yang C  Ming X  Lan X  Liao Z 《Planta》2012,236(1):239-250
Tryptophan decarboxylase (TDC) converts tryptophan into tryptamine that is the indole moiety of ajmalicine. The full-length cDNA of Rauvolfia verticillata (RvTDC) was 1,772 bps that contained a 1,500-bp ORF encoding a 499-amino-acid polypeptide. Recombinant 55.5 kDa RvTDC converted tryptophan into tryptamine. The K m of RvTDC for tryptophan was 2.89 mM, higher than those reported in other TIAs-producing plants. It demonstrated that RvTDC had lower affinity to tryptophan than other plant TDCs. The K m of RvTDC was also much higher than that of strictosidine synthase and strictosidine glucosidase in Rauvolfia. This suggested that TDC might be the committed-step enzyme involved in ajmalicine biosynthesis in R. verticillata. The expression of RvTDC was slightly upregulated by MeJA; the five MEP pathway genes and SGD showed no positive response to MeJA; and STR was sharply downregulated by MeJA. MeJA-treated hairy roots produced higher level of ajmalicine (0.270 mg g?1 DW) than the EtOH control (0.183 mg g?1 DW). Highest RvTDC expression level was detected in hairy root, about respectively 11, 19, 65, and 109-fold higher than in bark, young leaf, old leaf, and root. Highest ajmalicine content was also found in hairy root (0.249 mg g?1 DW) followed by in bark (0.161 mg g?1 DW) and young leaf (0.130 mg g?1 DW), and least in root (0.014 mg g?1 DW). Generally, the expression level of RvTDC was positively consistent with the accumulation of ajmalicine. Therefore, it could be deduced that TDC might be the key enzyme involved in ajmalicine biosynthesis in Rauvolfia.  相似文献   

3.
4.
5.
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate (MVA), which is a rate-limiting step in the isoprenoid biosynthesis via the MVA pathway. In this study, the full-length cDNA encoding HMGR (designated as SmHMGR2, GenBank accession no. FJ747636) was isolated from Salvia miltiorrhiza by rapid amplification of cDNA ends (RACE). The cloned gene was then transformed into the hairy root of S. miltiorrhiza, and the enzyme activity and production of diterpenoid tanshinones and squalene were monitored. The full-length cDNA of SmHMGR2 comprises 1959 bp, with a 1653-bp open reading frame encoding a 550-amino-acid protein. Molecular modeling showed that SmHMGR2 is a new HMGR with a spatial structure similar to other plant HMGRs. SmHMGR2 contains two HMG-CoA-binding motifs and two NADP(H)-binding motifs. The SmHMGR2 catalytic domain can form a homodimer. The deduced protein has an isoelectric point of 6.28 and a calculated molecular weight of approximately 58.67 kDa. Sequence comparison analysis showed that SmHMGR2 had the highest homology to HMGR from Atractylodes lancea. As expected, a phylogenetic tree analysis indicates that SmHMGR2 belongs to plant HMGR group. Tissue expression pattern analysis shows that SmHMGR2 is strongly expressed in the leaves, stem, and roots. Functional complementation of SmHMGR2 in HMGR-deficient mutant yeast JRY2394 demonstrates that SmHMGR2 mediates the MVA biosynthesis in yeasts. Overexpression of SmHMGR2 increased enzyme activity and enhanced the production of tanshinones and squalene in cultured hairy roots of S. miltiorrhiza. Our DNA gel blot analysis has confirmed the presence and integration of the associated SmHMGR2 gene. SmHMGR2 is a novel and important enzyme involved in the biosynthesis of diterpenoid tanshinones in S. miltiorrhiza.  相似文献   

6.
To enhance the production of terpenoid indole alkaloids in Rauwolfia serpentina, Catharanthus tryptophan decarboxylase (Crtdc) gene was over-expressed in transgenic hairy root cultures using Agrobacterium rhizogenes-mediated transformation. Among six transgenic hairy root lines, line RT4 accumulated the highest alkaloid content, with 0.1202 % dry weight (DW) reserpine and 0.0064 % DW ajmalicine, after 10 weeks of culture. Whereas, wild-type roots accumulated 0.0596 ± 0.003 % DW reserpine and 0.0011 ± 0.001 % DW ajmalicine. Transgenic hairy root line RT7 produced the lowest alkaloid content (reserpine: 0.0896 ± 0.002 % DW; ajmalicine: 0.002 ± 0.0 % DW). On the basis of alkaloid content the six hairy root lines were grouped as RT4/RT2 > RT3/RT5 > RT7/RT8. Analysis of gene expression profile indicated that Crtdc was expressed at a higher level in transgenic lines, which could be correlated with enhanced metabolite accumulation in roots. This study confirms that over-expression of Crtdc is a superlative method to improve the biosynthetic potential of Rauwolfia hairy root cultures. Enhanced reserpine and ajmalicine production can serve as an alternative choice to provide resources for relative pharmaceutical industries.  相似文献   

7.
2C-methyl-D-erythritol 2,4-cyclodiphosphate (MEC) synthase (MECS, EC: 4.6.1.12) is the fifth enzyme of the nonmevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and further Taxol biosynthesis. The full-length MECS cDNA sequence (GenBank accession number DQ286391) was cloned and characterized for the first time from Taxus media, using the Rapid Amplification of cDNA Ends (RACE) technique. The full-length cDNA of Tmmecs was 1081 bp containing a 741 bp open reading frame (ORF) encoding a peptide of 247 amino acids with a calculated molecular mass of 26.1 kDa and an isoelectric point of 8.97. Comparative and bioinformatic analyses revealed that TmMECS had extensive homology with MECSs from other plant species. Phylogenetic analysis indicated that TmMECS was more ancient than other plant MECSs. Southern blot analysis revealed that Tmmecs belonged to a small gene family. Tissue expression pattern analysis indicated that Tmmecs expressed constitutively in all tissues including roots, stems and leaves. The cloning and characterization of Tmmecs will be helpful to understand more about the role of MECS involved in the Taxol biosynthesis at the molecular level. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 6, pp. 1013–1020. The article was submitted by the authors in English.  相似文献   

8.
9.
10.
Polygalacturonase-inhibiting proteins (PGIPs) are plant defense proteins. To date, no spatial distribution of PGIPs and interaction between PGIPs and nitric oxide (NO) in plant were described. Here, we first reported the full-length cDNA sequence of PGIP of Chorispora bungeana (CbPGIP1). Notably, immunofluorescence localization showed that the CbPGIP was evenly distributed in leaves but it was mainly localized in epidermis and vascular bundle in stems and roots. Further studies indicated that CbPGIP had higher abundance in roots than in stems and leaves. Conversely, the bulk PGIP of C. bungeana showed a higher activity in leaves than in stems and roots. In addition, quantitative real-time polymerase chain reaction demonstrated that CbPGIP1 expression was induced by Stemphylium solani, salicylic acid (SA), 4, ?4°C and NO. This is a first report attempting to predict if NO can induce the PGIP expression. Taken together, these findings showed that the gene was spatially regulated and NO and SA might take part in CbPGIP1 expression induced by biotic and abiotic stresses. This study highlighted the potential importance of CbPGIP1 and NO in plant resistance.  相似文献   

11.
Jin H  Gong Y  Guo B  Qiu C  Liu D  Miao Z  Sun X  Tang K 《Molekuliarnaia biologiia》2006,40(6):1013-1020
2C-methyl-D-erythritol 2,4-cyclodiphosphate (MEC) synthase (MECS, EC: 4.6.1.12) is the fifth enzyme of the nonmevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and further Taxol biosynthesis. The full-length MECS cDNA sequence (GenBank accession number DQ286391) was cloned and characterized for the first time from Taxus media, using Rapid Amplification of cDNA Ends (RACE) technique. The full-length cDNA of Tmmecs was 1081 bp containing a 741 bp open reading frame (ORF) encoding a peptide of 247 amino acids with a calculated molecular mass of 26.1 kDa and an isoelectric point of 8.97. Comparative and bioinformatic analyses revealed that TmMECS had extensive homology with MECSs from other plant species. Phylogenetic analysis indicated that TmMECS was more ancient than other plant MECSs. Southern blot analysis revealed that Tmmecs belonged to a small gene family. Tissue expression pattern analysis indicated that Tmmecs expressed constitutively in all tissues including roots, stems and leaves. The cloning and characterization of Tmmecs will be helpful to understand more about the role of MECS involved in the Taxol biosynthesis at the molecular level.  相似文献   

12.
Different methods of in vitro culture of Catharanthus roseus provide new sources of plant material for the production of secondary metabolites such as indole alkaloids. Callus, cell suspension, plantlets, and transgenic roots cultured in the bioreactor are used in those experiments. The most promising outcomes include the production of the following indole alkaloids: ajmalicine in unorganised tissue, catharanthine in the leaf and cell culture in the shake flask and airlift bioreactor, and vinblastine in shoots and transformed roots. What is very important, enzymatic coupling of monomeric indole alkaloids, vindoline and catharanthine, is possible to form vinblastine in cell cultures. The method of catharanthine and ajmalicine production in the suspension culture in bioreactors has been successful. In this method, elicitation may be used acting on different metabolic pathways. Also of interest is the method of obtaining arbutin from the callus culture of C. roseus conducted with hydroquinone. The transformed root culture seems to be the most promising for alkaloid production. The genetically transformed roots, obtained by the infection with Agrobacterium rhizogenes, produce higher levels of secondary metabolites than intact plants. Also, whole plants can be regenerated from hairy roots. The content of indole alkaloids in the transformed roots was similar or even higher when compared to the amounts measured in studies of natural roots. The predominant alkaloids in transformed roots are ajmalicine, serpentine, vindoline and catharanthine, found in higher amounts than in untransformed roots. Transformed hairy roots have been also used for encapsulation in calcium alginate to form artificial seeds.  相似文献   

13.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acid. In the present study, G. sylvestre was transformed by Agrobacterium rhizogenes. Seedling explants namely roots, stems, hypocotyls, cotyledonary nodal segments, cotyledons and young leaves were inoculated with A. rhizogenes strain KCTC 2703. Transformed (hairy) roots were induced from cotyledons and leaf explants. Six transgenic clones of hairy roots were established and confirmed by polymerase chain reaction (PCR) and RT-PCR using rolC specific primers. Hairy roots cultured using MS liquid medium supplemented with 3 % sucrose showed highest accumulation of biomass (97.63 g l?1 FM and 10.92 g l?1 DM) at 25 days, whereas highest accumulation of gymnemic acid content (11.30 mg g?1 DM) was observed at 20 days. Nearly 9.4-fold increment of biomass was evident in suspension cultures at 25 days of culture and hairy root biomass produced in suspension cultures possessed 4.7-fold higher gymnemic acid content when compared with the untransformed control roots. MS-based liquid medium was superior for the growth of hairy roots and production of gymnemic acid compared with other culture media evaluated (B5, NN and N6), with MS-based liquid medium supplemented with 3 % sucrose was optimal for secondary metabolite production. The current results showed great potentiality of hairy root cultures for the production of gymnemic acid.  相似文献   

14.
15.
16.
17.
18.
Scutellaria lateriflora is well known for its medical applications because of the presence of flavanoids and alkaloids. The present study aimed to explore the molecular aspects and regulations of flavanoids. Five partial cDNAs encoding genes that are involved in the flavonoid biosynthetic pathway: phenylalanine ammonia lyase (SlPAL), cinnamate 4-hydroxylase (SlC4H), 4-coumaroyl CoA ligase (Sl4CL), chalcone synthase (SlCHS), and chalcone isomerase (SlCHI) were isolated from S. lateriflora. Organ expression analysis showed that these genes were expressed in all organs analyzed with the highest levels correlating with the richest accumulation of wogonin in the roots. Baicalin and baicalein differentially accumulated in S. lateriflora plants, with the highest concentration of baicalin and baicalein detected in the leaves and stems, respectively. Exogenous methyl jasmonate (MeJA) significantly enhanced the expression of SlCHS and SlCHI, and accumulation of baicalin (22.54 mg/g), baicalein (1.24 mg/g), and wogonin (5.39 mg/g) in S. lateriflora hairy roots. In addition, maximum production of baicalin, baicalein, and wogonin in hairy roots treated with MeJA was approximately 7.44-, 2.38-, and 2.12-fold, respectively. Light condition increased the expression level of SlCHS, the first committed step in flavonoid biosynthesis in hairy roots of S. lateriflora after 3 and 4 weeks of development compared to the dark condition. Dark-grown hairy roots contained a higher content of baicalin and baicalein than light-grown hairy roots, while light-grown hairy roots accumulated more wogonin than dark-grown hairy roots. These results may helpful for the metabolic engineering of flavonoids biosynthesis in S. lateriflora.  相似文献   

19.
5-enolpyruvylshikimate 3-phosphate synthase (EPSPS; 3-phosphoshikimate 1-carboxyvinyl-transferase; EC 2.5.1.19) is a critical enzyme in the shikimate pathway. The full-length EPSPS cDNA sequence (CaEPSPS, GenBank accession number: AY639815) was cloned and characterized for the first time from woody plant, Camptotheca acuminata, using rapid amplification of cDNA ends (RACE) technique. The full-length cDNA of CaEPSPS was 1778 bp containing a 1557 bp ORF (open reading frame) encoding a polypeptide of 519 amino acids with a calculated molecular mass of 55.6 kDa and an isoelectric point of 8.22. Comparative and bioinformatic analyses revealed that CaEPSPS showed extensive homology with EPSPSs from other plant species. CaEPSPS contained two highly conserved motifs owned by plant and most bacteria EPSPSs in its N-terminal region. Phylogenetic analysis revealed that CaEPSPS belonged to dicotyledonous plant EPSPS group. Tissue expression pattern analysis indicated that CaEPSPS was constitutively expressed in leaves, stems and roots, with the lower expression being found in roots. The coding sequence of CaEPSPS gene was successfully subcloned in a plasmid-Escherichia coli system (pET-32a), and the cells containing the plasmid carrying the CaEPSPS gene exhibited enhanced tolerance to herbicide glyphosate, compared to the control.  相似文献   

20.
《Plant science》1987,49(3):217-222
Agrobacterium rhizogenes induced hairy roots on discs of the tuber tissue of the tetraploid potato cv. Bintje after infection. Early and late generated hairy roots (transformed roots) were excised directly from the tuber discs and analysed for genetic stability by chromosome counts and determination of nuclear DNA content with flow cytometry. Another part was cloned by subculturing on MS-medium without hormones and subsequently analysed. Twenty-one of the 27 primary hairy roots and all 16 subcultured hairy roots were tetraploid thus suggesting genetic stability of transformed roots. Shoot regeneration was observed on hairy roots and therefore, it is suggested that A. rhizogenes transformation can be a suitable system for genetically stable plant regeneration from transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号