首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new affinity matrix for mineralocorticoid receptors   总被引:2,自引:0,他引:2  
The behavior of mineralocorticoid and glucocorticoid receptors of rabbit kidney cytosol was investigated on two affinity gels: a new affinity matrix prepared with a 3-O-derivative of carboxymethyloxime deoxycorticosterone (deoxycorticosterone gel) and a gel linked to a 17 beta-dexamethasone derivative (dexamethasone gel). Deoxycorticosterone gel was highly specific, since it retained mineralocorticoid but not glucocorticoid receptors, and dexamethasone gel exhibited high selectivity for glucocorticoid receptors since it did not bind mineralocorticoid receptors. The use of these two matrices allowed separation of mineralocorticoid and glucocorticoid receptors and further characterization of each type of cytosolic receptors after its isolation. Cytosolic mineralocorticoid and glucocorticoid receptors stabilized by tungstate were found to have a Stokes radius of approximately 6 nm, as determined by high performance size exclusion chromatography and a sedimentation coefficient of approximately 9 S, determined on a glycerol density gradient containing tungstate, under either high or low salt conditions. The hydrodynamic parameters, binding characteristics, and specificity of mineralocorticoid receptors were the same in the untreated and dexamethasone gel-treated cytosol. Similarly glucocorticoid receptor characteristics remained unchanged after deoxycorticosterone gel treatment, indicating biochemical independence of cytosolic mineralocorticoid and glucocorticoid receptors. The [3H]aldosterone receptor complex eluted from deoxycorticosterone gel was recovered with a 30-40% yield and a purification factor of about 1000. Purified mineralocorticoid receptors had the same sedimentation coefficient as cytosolic mineralocorticoid receptors (9 S) but a different Stokes radius (4 versus 6 nm). The decrease in the Stokes radius of the purified mineralocorticoid receptors was probably due to the gel filtration method. These results indicate that the newly synthesized matrix specific for mineralocorticoid receptors constitutes a powerful tool for their extensive purification.  相似文献   

2.
The reactivity of a monoclonal antibody BuGR1, raised against glucocorticoid receptors of rat liver, with glucocorticoid and mineralocorticoid receptors of mammalian (rabbit) and amphibian (A6 cells) origin was examined. The glucocorticoid receptors of rabbit kidney and liver and of A6 cells were labeled with tritiated dexamethasone. The mineralocorticoid receptors were labeled with tritiated aldosterone in the presence or absence of RU26988, depending on whether aldosterone was bound to glucocorticoid receptors (A6 cells) or not (rabbit kidney), in addition to its binding to mineralocorticoid receptors. BuGR1 did not recognize mineralocorticoid receptors of A6 cells and rabbit kidney. BuGR1 cross-reacted with glucocorticoid receptors of rabbit liver and kidney but not of A6 cells, suggesting that the domain of glucocorticoid receptors recognized by BuRG1 could be present only in the mammalian species. The findings indicate that BuGR1 shows species differences as well as receptor class specificity.  相似文献   

3.
C6 glioma cells contain two types of receptors for adrenocorticoids. Glucocorticoid (Type II) receptors are present at higher density and mediate increases in glycerol phosphate dehydrogenase and glutamine synthetase activity. The function of mineralocorticoid (Type I) receptors present at low density in C6 cells is unknown. Since mineralocorticoid (Type I) receptors in renal epithelial cells regulate cation transport, we sought to determine whether adrenocorticoid receptors located in glioma cells are similarly linked to electrolyte transporting activity. Occupation of mineralocorticoid receptors in C6 glioma by adrenocorticoids did not alter Na+ or K+ transport, in contrast to their effects on renal epithelial and vascular smooth muscle cells. Occupation of glucocorticoid receptors produced a 20-25% decrease in K+ uptake into C6 cells, but did not alter Na+ influx. Stimulation of Na+ influx with the ionophore monensin produced a large ouabain-sensitive increase in glucose utilization, as measured by 2-deoxyglucose uptake. However, mineralocorticoid receptor occupation did not alter glucose utilization, providing further evidence that these receptors do not influence Na+ transport in C6 cells. These studies provide evidence that mineralocorticoid receptors in glioma cells do not regulate Na+ or K+ transport. Glial glucocorticoid receptors have an inhibitory effect on glial K+ influx, which may contribute to glucocorticoid hormone effects on brain excitability.  相似文献   

4.
In studies from several laboratories evidence has been adduced that renal Type I (mineralocorticoid) receptors and hippocampal "corticosterone-preferring" high affinity glucocorticoid receptors have similar high affinity for both aldosterone and corticosterone. In all these studies the evidence for renal mineralocorticoid receptors is indirect, inasmuch as the high concentrations of transcortin (CBG) in renal cytosol make studies with [3H]corticosterone as a probe difficult to interpret, given its high affinity for CBG. We here report direct binding studies, with [3H]aldosterone and [3H]corticosterone as probes, on hippocampal and renal cytosols from adrenalectomized rats, in which tracer was excluded from Type II dexamethasone binding glucocorticoid receptors with excess RU26988, and from CBG by excess cortisol 17 beta acid. In addition, we have compared the binding of [3H]aldosterone and [3H]corticosterone in renal cytosols from 10-day old rats, in which CBG levels in plasma and kidney are extremely low. Under conditions where neither tracer binds to type II sites or CBG, they label an equal number of sites (kidney 30-50 fmol/mg protein, hippocampus approximately 200 fmol/mg protein) with equal, high affinity (Kd 4 degrees C 0.3-0.5 nM). Thus direct tracer binding studies support the identity of renal Type I mineralocorticoid receptors and hippocampal Type I (high affinity, corticosterone preferring) glucocorticoid receptors.  相似文献   

5.
The present investigation was aimed at examining whether interaction of aldosterone with specific mineralocorticoid receptors at the level of the pituitary gland may account for the inhibitory effect of that steroid on ACTH secretion. By using pituitaries from neonatal rats, which we show to completely lack specific mineralocorticoid receptors but to contain a functional glucocorticoid receptor system, we demonstrated the persistence of aldosterone-induced inhibition of ACTH release from perifused glands. Conversely, when the glucocorticoid receptors sites were blocked in pituitaries from mature rats by means of a potent antiglucocorticoid (RU 38486), thus leaving unaltered mineralocorticoid binder, aldosterone no longer dampened hormonal output. We conclude that the latter steroid affected corticotropic activity by interacting not with its proper and specific receptor, but rather with the glucocorticoid binding sites.  相似文献   

6.
Patients with apparent mineralocorticoid excess (AME) have low or absent activity of the enzyme 11 beta OH steroid dehydrogenase (11SD), and inappropriately high intrarenal levels of cortisol resulting in Na+ retention and hypertension. Pseudohypoaldosteronism (PHA), in contrast, is characterized by salt wasting despite hyperaldosteronemia, reflecting low or absent mineralocorticoid receptors (MR). Although AME is presumed to reflect inappropriate cortisol occupancy of MR, several features also suggest inappropriate occupancy of glucocorticoid receptors (GR). To test this possibility, we administered carbenoxolone, which is known to block 11SD, to four patients with PHA, and observed marked mineralocorticoid effects, e.g., antinatriuresis and elevated plasma bicarbonate. To further test the possibility that occupancy of renal GR may induce a classical mineralocorticoid response, we administered the highly specific glucocorticoid RU 28362 to adrenalectomized rats and showed that it has profound antinatriuretic effects. Finally, by selectively blocking MR with RU 28318 or GR with RU 38486, we have shown that corticosterone, the physiologic glucocorticoid in rats, has an antinatriuretic effect in adrenalectomized rats via either MR or GR occupancy. Previous studies have clearly shown that MR are inherently nonselective and have equivalent intrinsic affinity for aldosterone, corticosterone, and cortisol. The present studies suggest that this nonselectivity includes the nuclear response element to which either MR or GR may bind to elicit a mineralocorticoid effect, and further underscore the importance of the enzyme 11SD in the specific mineralocorticoid action of aldosterone.  相似文献   

7.
Adrenalectomized rat kidney is commonly used for the study of mineralocorticoid mechanism of action in mammals. In this model, aldosterone is known to bind to two classes of binding sites: type I (mineralocorticoid) and type II (glucocorticoid). The study of the aldosterone binding in normal rat kidney requires the elimination of endogenous hormones bound to each type of receptor. Thus, a suitable technique was developed using in situ perfusion of the kidneys. The efficacy of this method was of about 85 to 90% at the level of both cytoplasm and nucleus. Aldosterone binding capacity was checked in normal rat kidney after in situ perfusion and was found to be 300 to 500% lower than in adrenalectomized rat kidney, both in cytoplasm and nuclei. Computer analysis of aldosterone binding parameters in the cytoplasm (30,000 X g supernatant) of rat kidney suggested that adrenalectomy might induce an important rise in the number of mineralocorticoid receptors (congruent to 260%). An increase in the number of glucocorticoid receptors was also observed but appeared to be lower. Aldosterone, when perfused during 24 h in adrenalectomized rats, lowered the number of type I sites to the same level as observed in normal rat kidney. This effect was fully reversible after interruption of aldosterone perfusion. These results suggested an aldosterone-induced down regulation of mineralocorticoid receptors.  相似文献   

8.
The steroid hormone receptors regulate important physiological functions such as reproduction, metabolism, immunity, and electrolyte balance. Mutations within steroid receptors result in endocrine disorders and can often drive cancer formation and progression. Despite the conserved three-dimensional structure shared among members of the steroid receptor family and their overlapping DNA binding preference, activation of individual steroid receptors drive unique effects on gene expression. Here, we present the first structure of the human mineralocorticoid receptor DNA binding domain, in complex with a canonical DNA response element. The overall structure is similar to the glucocorticoid receptor DNA binding domain, but small changes in the mode of DNA binding and lever arm conformation may begin to explain the differential effects on gene regulation by the mineralocorticoid and glucocorticoid receptors. In addition, we explore the structural effects of mineralocorticoid receptor DNA binding domain mutations found in type I pseudohypoaldosteronism and multiple types of cancer.  相似文献   

9.
Steroid binding to cognate receptors is of high affinity. However, due to the appreciable homologies in the steroid-binding domains of receptors, this binding is hardly ever totally specific. We have recently obtained evidence that a vicinal dithiol group is involved in steroid binding to glucocorticoid receptors and that these vicinal dithiols are two of the three cysteines in the 16-kDa steroid-binding core. We now report that a comparison of the placement of cysteines in the comparable region of other receptors revealed a lack of similarly closely spaced thiols, which led to the prediction that arsenite would be totally selective in its interaction with glucocorticoid receptors. In fact, 100 microM arsenite inhibited all steroid binding to glucocorticoid receptors while having no effect on the binding of androgen, estrogen, mineralocorticoid, or progesterone receptors. Such total selectivity is not seen for selenite, which is another very potent inhibitor of glucocorticoid binding. This is the first report of absolute selectivity among steroid receptors that is based upon a known structural feature of the receptor protein. This selectivity of arsenite provides the easiest method to date for distinguishing between glucocorticoid and mineralocorticoid receptors and for selectively blocking steroid binding to glucocorticoid receptors in the assays of other receptors.  相似文献   

10.
In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.  相似文献   

11.
12.
Hippocampal CA1 neurons express both mineralocorticoid and glucocorticoid receptors. Due to the difference in affinity of the two receptor types for corticosterone and variations in endogenous steroid levels, occupation of the receptors will range between a situation of predominant mineralocorticoid receptor activation and conditions where both receptor types are occupied. It was observed that local signal transduction is regulated by activation of the corticosteroid receptors. Particularly, transmission mediated by biogenic amines appears to be sensitive to steroid control. The data indicate that cholinergic and serotonergic responses are small with predominant mineralocorticoid receptor activation, while additional glucocorticoid receptor activation results in large responses; the reverse has been found for noradrenalin. The steroid-dependent control over transmission by biogenic amines will influence local excitability and therefore functional processes in which the hippocampal system is involved.  相似文献   

13.
14.
In rat hippocampus, the mineralocorticoid receptor and the glucocorticoid receptor bind corticosterone with high affinity. We have studied the association of these receptors with the nuclear matrix both after in vivo and in vitro administration of radiolabelled corticosterone to hippocampus cells. It was found that in vivo 100% and in vitro 60% of the corticosterone that specifically bound to rat hippocampus nuclei was attached to the nuclear matrix. A selective glucocorticoid receptor agonist did not compete for corticosterone binding. This indicates that this binding was mediated by the mineralocorticoid receptor rather than the glucocorticoid receptor.  相似文献   

15.
Glucocorticoids are used as a treatment for a variety of conditions and hypertension is a well-recognized side effect of their use. The mechanism of glucocorticoid-induced hypertension is incompletely understood and has traditionally been attributed to promiscuous activation of the mineralocorticoid receptor by cortisol. Multiple lines of evidence, however, point to the glucocorticoid receptor as an important mediator as well. We have developed a mouse model of glucocorticoid-induced hypertension, which is dependent on the glucocorticoid receptor. To determine the site(s) of glucocorticoid receptor action relevant to the development of hypertension, we studied glucocorticoid-induced hypertension in a mouse with a tissue-specific knockout of the glucocorticoid receptor in the distal nephron. Although knockout mice had similar body weight, nephron number and renal histology compared to littermate controls, their baseline blood pressure was mildly elevated. Nevertheless, distal nephron glucocorticoid receptor knockout mice and controls had a similar hypertensive response to dexamethasone. Urinary excretion of electrolytes, both before and after administration of glucocorticoid was also indistinguishable between the two groups. We conclude that the glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension in our model.  相似文献   

16.
Rat C6 glioma cells contain two receptors for adrenocorticoids—the predominant glucocorticoid receptor and low densities of the Type I corticosteroid (mineralocorticoid) receptor. Nanomolar concentrations of deoxycorticosterone, corticosterone and aldosteceptor. Nanomolar concentrations of deoxycorticosterone, corticosterone and aldosterone, which fully occupy Type I receptors, produced a slight stimulatory effect on C6 cell growth in serum-free media. However, spironolactone, a Type I receptor antagonist, and pregnenolone, which does not bind to Type I receptors, had similar effects. Therefore, the slight growth stimulation produced by low steroid concentrations is not mediated by Type I or glucocorticoid receptors, but may be due to an effect on cell membrane properties or other receptor-independent action. Occupation of glucocorticoid receptors by higher concentrations of corticosteroids inhibited C6 cell growth.  相似文献   

17.
In the brain, the action of glucocorticoid steroids is mediated via two intracellular receptors, the mineralocorticoid (MR), or type I receptor, and the glucocorticoid (GR), or type II receptor. These receptors are expressed in many types of neurons and are co-expressed in some neurons such as the hippocampal pyramidal cells. Although glucocorticoids are known to affect gliogenesis and glial cell differentiation, the expression of the GR in different types of glial cells throughout the brain has not been thoroughly studied and the expression of the MR in glia not previously reported. Here we review studies suggesting that both receptors are expressed in astrocytes and oligodendrocytes.  相似文献   

18.

Background  

Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear.  相似文献   

19.
Corticosteroid derivatives coupled in the C3, C7 or C17 position with a long aliphatic chain were synthesized in order to select a suitable ligand for the preparation of a biospecific affinity adsorbent for mineralocorticoid receptor purification. The affinity of these derivatives for mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) was explored in rabbit kidney cytosol. In this model, aldosterone bound to a single class of receptors with high affinity (Kd 1 nM) and mineralocorticoid specificity. RU26988, a highly specific ligand for GR, did not compete for these sites. The C7 and C17 positions were found to be of crucial importance in the steroid's interaction with the mineralocorticoid receptors, since the linkage of a long side chain in these positions induced complete loss of affinity. Hence, deoxycorticosterone no longer bound to MR after 17 beta substitution with a 9-carbon aliphatic chain. This loss of affinity was not observed for glucocorticoids. The 17 beta nonylamide derivative of dexamethasone still competed for GR. Increasing the length of the C7 side of the spirolactone SC26304 suppressed its affinity for MR. Finally, C3 was an appropriate position for steroid substitution. The 3-nonylamide of carboxymethyloxime deoxycorticosterone bound to MR but not to GR, and therefore constitutes a suitable ligand for the preparation of a mineralocorticoid adsorbent.  相似文献   

20.
Glucocorticoids are the main product of the adrenal cortex and participate in multiple cell functions as immunosupressors and modulators of neural function. Within the brain, glucocorticoid activity is mediated by high-affinity mineralocorticoid and low-affinity glucocorticoid receptors. Among brain cells, hippocampal cells are rich in glucocorticoid receptors where they regulate excitability and morphology. Also, elevated glucocorticoid levels suppress hippocampal neurogenesis in adults. The pineal neuroindole, melatonin, reduces the affinity of glucocorticoid receptors in rat brain and prevents glucocorticoid-induced apoptosis. Here, the ability of melatonin to prevent glucocorticoid-induced cell death in hippocampal HT22 cells was investigated in the presence of neurotoxins. Results showed that glucocorticoids reduce cellular growth and also enhance sensitivity to neurotoxins. We found a G(1) cell cycle arrest mediated by an increase of cyclin/cyclin-dependent kinase inhibitor p21(WAF1/CIP1) protein after dexamethasone treatment and incremental change in amyloid beta protein and glutamate toxicity. Melatonin prevents glucocorticoids inhibition of cell proliferation and reduces the toxicity caused by glucocorticoids when cells were treated with dexamethasone in combination with neurotoxins. Although, melatonin does not reduce glucocorticoid receptor mRNA or protein levels, it decreases receptor translocation to nuclei in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号