首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been much interest in the health effects of dietary fat, but few studies have comprehensively compared the acute metabolic fate of specific fatty acids in vivo. We hypothesized that different classes of fatty acids would be variably partitioned in metabolic pathways and that this would become evident over 24 h. We traced the fate of fatty acids using equal amounts of [U-(13)C]linoleate, [U-(13)C]oleate, and [U-(13)C]palmitate given in a test breakfast meal in 12 healthy subjects. There was a tendency for differences in the concentrations of the tracers in plasma chylomicron-triacylglycerol (TG) (oleate > palmitate > linoleate). This pattern remained in plasma nonesterified fatty acid (NEFA) and very low-density lipoprotein (VLDL)-TG (P 相似文献   

2.
Abstract

This study was conducted to determine the effects of long chain fatty acids (LCFAs) on triacylglycerol (TAG) content, as well as on genes associated with lipid synthesis and fatty acid composition in bovine satellite cells. Both saturated (palmitic and stearic) and unsaturated (oleic and linoleic) fatty acids stimulated the TAG accumulation at a concentration of 100?µM and oleate increased it significantly more than stearate and palmitate. The results revealed that the lipid droplet formation was markedly stimulated by linoleate and oleate at 100?µM. Compared to control, the expressions of adipose triglyceride lipase, carnitine acyltransferase 1 and the fatty acid translocase 36 were upregulated by LCFAs. All the fatty acids also significantly increased diacylglycerol acyltransferase 2 than the untreated control (p?<?0.05). The monounsaturated fatty acids significantly increased (p?<?0.05) in response to oleate and linoleate compared to the control as did the polyunsaturated fatty acids (p?<?0.05), in addition to stearate, linoleate and oleate. In contrast, saturated fatty acids were significantly decreased in the oleate and linoleate-treated groups. The study results contribute to our enhanced understanding of LCFAs’ regulatory roles on the bovine cell lipid metabolism.  相似文献   

3.
The fatty acids of the triacylglycerol reserves in the fat body and of the diacylglycerol of lipophorin in the hemolymph of non-diapause and diapause larvae of D. grandiosella were compared. For both non-diapause and diapause larvae palmitate, palmitoleate, oleate, and linoleate were the predominant fatty acids present in fatty body triacylglycerol, and palmitate, oleate, and linoleate were the predominant fatty acids present in lipophorin diacylglycerol. However, differences were detected in the relative amounts of oleate and linoleate present in lipophorin diacylglycerol of non-diapause and diapause larvae. The relative amount of linoleate in lipophorin diacylglycerol declined during diapause, whereas that of oleate remained relatively high during diapause. The fatty acid profile of lipophorin diacylglycerol from non-diapause larvae treated with a juvenile hormone analog to induce a diapause-like state more closely matched that of diapause larvae than that of non-diapause larvae. The differences detected in the fatty acid composition of lipophorin diacylglycerol in non-diapause and diapause larvae appear to be due mainly to the different physiological states rather than to the different rearing temperatures employed. The results are discussed in relation to the essential role fatty acids, especially oleate, play in the survival of diapause larvae.  相似文献   

4.
[1-14C]Oleic and [1-14C]linoleic acids were rapidly desaturated when incubated with maize leaves from 8-day-old plants and the labeled fatty acids, and their desaturation products, were rapidly incorporated into glycerolipids. Oleic acid was desaturated to linoleate at the rate of 0.7 nmol/100 mg tissue/h and further desaturated to linolenate at about one-third this rate. The rates of linolenate formation were similar when either oleic acid or linoleic acid was the substrate although there was a 2-h lag period when oleic acid was substrate. When radioactive oleic, linoleic, and linolenic acids were substrates, phosphatidylcholine was the most extensively labeled glycerolipid followed by monogalactosyldiacylglycerol. The relative rates of incorporation of label into individual glycerolipids are consistent with a movement of labeled fatty acids from phosphatidylcholine to monogalactosyldiacylglycerol and then to diagalactosyldiacylglycerol. The rates of labeling of phosphatidylcholine oleate and of phosphatidylcholine linoleate are consistent with a precursor-product relationship in that there was a delayed accumulation of phosphatidylcholine linoleate relative to that of phosphatidylcholine oleate and phosphatidylcholine linoleate continued to accumulate while phosphatidylcholine oleate declined. Linoleate formed from oleate was widely distributed in glycerolipids but neither phosphatidylcholine linolenate nor linolenate-containing diacylglycerol was detected at short and intermediate incubation times when either oleic or linoleic acid was substrate. The kinetics of incorporation of linoleate and linolenate into monogalactosyldiacylglycerol suggest a transfer of linoleate from phosphatidylcholine. The initial rate of accumulation of labeled linolenate in monogalactosyldiacylglycerol was very similar to the rate of desaturation of linoleate and it is suggested that desaturation of linoleate occurs while associated with monogalactosyl-diacylglycerol.  相似文献   

5.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

6.
Etiolated Cucumis sativus L. cotyledons preferentially catabolized exogenous [1-14C]oleic acid and [1-14C]linoleic acid with relatively little incorporation into complex lipids or desaturation of the 14C-labeled fatty acids. Following a 16-hour exposure to light, the greening cotyledons efficiently desaturated the exogenous 14C-labeled fatty acids. A small amount of oleate desaturation to linoleate was observed in etiolated tissue, but hardly any linoleate desaturation to α-linolenate was detected. Both oleate and linoleate desaturation showed diurnal variations with maxima at the end of light periods and minima at the end of dark periods. Illumination of etiolated tissue by flashing light, as opposed to continuous light, failed to stimulate either chlorophyll or α-linolenic acid biosynthesis, and both processes could be halted or reversed by 10 micrograms per milliliter cycloheximide. Production of polyunsaturated fatty acids from [1-14C]acetate, [1-14C]oleic acid, and [1-14C]linoleic acid, by greening cucumber cotyledons, was markedly affected by tissue integrity with finely chopped cotyledons having very little capacity for their synthesis and intact seedlings showing the highest rates.  相似文献   

7.
Experiments were conducted to test the effects of age, sex, and level and type of dietary fat on the oxidation rates of carboxyl- and uniformly-labeled linoleate, oleate and palmitate. There were no significant differences due to age, sex, nor diet alone but a statistically significant (P < 0.05) interaction between sex and tissue was found. The latter appeared to be due to the slower rate displaced by liver homogenates from male rats than females. CO2 was more rapidly labeled from carboxyl- than from uniformly-labeled fatty acids. In heart, palmitate was oxidized at a faster rate than linoleate with oleate demonstrating the slowest rate. In liver, the relative rates were linoleate > palmitate ? oleate. Incubation conditions, tissue interactions, position of label and end products recovered are discussed in relation to interpretation of results in studies of fatty acid metabolism.  相似文献   

8.
Studying the effects of saturated and unsaturated fatty acids on biological and model (liposomes) membranes could provide insight into the contribution of biophysical effects on the cytotoxicity observed with saturated fatty acids. In vitro experiments suggest that unsaturated fatty acids, such as oleate and linoleate, are less toxic, and have less impact on the membrane fluidity. To understand and assess the biophysical changes in the presence of the different fatty acids, we performed computational analyses of model liposomes with palmitate, oleate, and linoleate. The computational results indicate that the unsaturated fatty acid chain serves as a membrane stabilizer by preventing changes to the membrane fluidity. Based on a Voronoi tessellation analysis, unsaturated fatty acids have structural properties that can reduce the lipid ordering within the model membranes. In addition, hydrogen bond analysis indicates a more uniform level of membrane hydration in the presence of oleate and linoleate as compared to palmitate. Altogether, these observations from the computational studies provide a possible mechanism by which unsaturated fatty acids minimize biophysical changes and protect the cellular membrane and structure. To corroborate our findings, we also performed a liposomal leakage study to assess how the different fatty acids alter the membrane integrity of liposomes. This showed that palmitate, a saturated fatty acid, caused greater destabilization of liposomes (more “leaky”) than oleate, an unsaturated fatty acid.  相似文献   

9.
Fatty acid analyses of lipids from lizard fat bodies, carcass, and blood serum were performed by GLC. Principal fatty acids from all three tissues were palmitate (16:0), stearate (18:0), oleate (18:1), and linoleate (18:2). Administration of estradiol to vitellogenic or non-vitellogenic lizards increased serum levels of non-esterified fatty acids, but had no effect on the fat body wet weights. Lizards receiving estradiol had a higher proportion of arachidonate and a lower proportion of oleate in their serum non-esterified fatty acids.  相似文献   

10.
Salicylic Acid Levels in Thermogenic and Non-Thermogenic Plants   总被引:7,自引:0,他引:7  
The natural trigger for heat production in the thermogenic inflorescencesof Sauromatum guttatum Schott (voodoo lily) was recently identifiedas salicylic acid (SA), which induced heat production at levelsas low as 13 ng g f. wt–1. Since then the levels of SAwere determined in other thermogenic and non-thermogenic plantspecies. In thermogenic inflorescences of five aroid species,and in male cones of at least four thermogenic cycads SA levelsduring heat production exceeded 1 µg g f. wt–1.SA was not detected in the thermogenic flowers of a water lily,Victoria regia Lindl. (Nymphaeaceae), and Bactris major Jacq.(Palmae). Levels of salicylic acid varied substantially in thefloral parts of seven non-thermogenic species and in the leavesof 27 non-thermogenic species. Amorphophallus campanulatus Blume ex Decne, Arum italicum Mill., Arum dioscoridis Sibth. & Son., Philodendron selloum Koch, Monstera deliciosa Liebm., Encephalartosferox Bertol. f., Encephalartos hildebrandtii A. Br. & Bouché, Encephalartos gratus Prain, Dioon edule Lindl. cv. edule, Dioon edule Lindl. cv angustifolium, Sauromatum guttatum Schott, voodoo lily, Victoria regia Lindl., Bactris major Jack, salicylic acid, thermogenicity, heat production  相似文献   

11.
12.
The viability of Streptococcus lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h was better preserved when the cells were grown in medium supplemented with oleic acid or Tween 80 (polyoxyethylene sorbitan monooleate). A pronounced change in the cellular fatty acid composition was noted when the bacteria were grown in the presence of Tween 80. In S. lactis the ratio of unsaturated to saturated fatty acids increased from 1.18 to 2.55 and in Lactobacillus sp. A-12 it increased from 0.85 to 1.67 when Tween 80 was added to the growth medium. The antibiotic cerulenin markedly inhibited the growth of lactic acid bacteria in tomato juice (TJ) medium but had almost no effect on the growth of the bacteria in TJ medium containing Tween 80 (or oleic acid). The antibiotic inhibited markedly the incorporation of [1-14C]acetate but had no inhibitory effect on the incorporation of exogenous [1-14C]oleate (or [1-14C]palmitate) into the lipid fractions of lactic acid bacteria. Thus, the fatty acid composition of lactic acid bacteria, inhibited by the antibiotic cerulenin, can be modulated by exogenously added oleic acid (or Tween 80) without the concurrent endogenous fatty acid synthesis from acetate. The data obtained suggest that cerulenin inhibits neither cyclopropane fatty acid synthesis nor elongation of fatty acid acyl intermediates. The radioactivity of cells grown in the presence of [1-14C]oleate and cerulenin was associated mainly with cyclopropane Δ19:0, 20:0 + 20:1, and 21:0 acids. As a consequence, cerulenin caused a decrease in the ratio of unsaturated to saturated fatty acids in lactic acid bacteria as compared with cells grown in TJ medium plus Tween 80 but without cerulenin. Cerulenin caused a decrease in the viability of S. lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h only when Tween 80 was present in the growth medium. We conclude that the sensitivity of lactic acid bacteria to damage from freezing can be correlated with specific alterations in the cellular fatty acids.  相似文献   

13.
The term ‘essential fatty acid’ is ambiguous and inappropriately inclusive or exclusive of many polyunsaturated fatty acids. When applied most rigidly to linoleate and -linolenate, this term excludes the now well accepted but conditional dietary need for two long chain polyunsaturates (arachidonate and docosahexaenoate) during infancy. In addition, because of the concomitant absence of dietary -linolenate, essential fatty acid deficiency is a seriously flawed model that has probably led to significantly overestimating linoleate requirements. Linoleate and -linolenate are more rapidly β-oxidized and less easily replaced in tissue lipids than the common ‘non-essential’ fatty acids (palmitate, stearate, oleate). Carbon from linoleate and -linolenate is recycled into palmitate and cholesterol in amounts frequently exceeding that used to make long chain polyunsaturates. These observations represent several problems with the concept of ‘essential fatty acid’, a term that connotes a more protected and important fatty acid than those which can be made endogenously. The metabolism of essential and non-essential fatty acids is clearly much more interconnected than previously understood. Replacing the term ‘essential fatty acid’ by existing but less biased terminology, i.e. polyunsaturates, ω3 or ω6 polyunsaturates, or naming the individual fatty acid(s) in question, would improve clarity and would potentially promote broader exploration of the functional and health attributes of polyunsaturated fatty acids.  相似文献   

14.
Paramecium requires oleic acid for growth and can grow in media containing no other fatty acids. In the present study, we have shown that this ciliate utilized oleate mainly as a carbon and energy source, even though this fatty acid was the only substrate available for synthesis of polyunsaturated fatty acids. Culture growth was inhibited by the addition of the drug triparanol. Triparanol decreased the formation of polyunsaturated fatty acids from oleate by preventing desaturation to form the dienoic acid, linoleate. Triparanol inhibition resulted in an altered phospholipid fatty acyl composition, an increased fragility and an altered behavioral response of the cells to a depolarizing stimulation solution. Therefore, although most of the dietary oleate was not used by the cells for polyunsaturated fatty acid synthesis, the desaturation of oleic acid was critical for normal culture growth, cell integrity and swimming behavior, all of which are expected to be dependent on normal membrane lipid composition.  相似文献   

15.
Human skin fibroblasts incorporate and actively desaturate long-chain fatty acids. Growth of these cells in lipid-free medium can be used to enhance delta 9 and delta 6 desaturation of [14C]stearate and [14C]linoleate, respectively. Medium supplementation with cis fatty acids inhibits delta 9 desaturation; effectiveness as inhibitors is linoleate (9c,12c-18:2) greater than oleate (9c-18:1) greater than vaccenate (11c-18:1). Linoelaidate (9t,12t-18:2), trans-vaccenate (11t-18:1) and saturated fatty acids are without effect; elaidate (9t-18:1) appears stimulatory. By contrast, the trans fatty acids elaidate and linoelaidate are potent inhibitors of delta 6 desaturation; inhibition by trans-vaccenate is 50% of that of elaidate. Desaturation of [14C]linoleate is only slightly inhibited by oleate, cis-vaccenate, or (6c,9c,12c)-linolenate. The relative effectiveness of isomeric cis- and trans-octadecenoic acids as inhibitors of delta 9 and delta 6 desaturation in intact human cells is different from that found in microsomal studies. The cell culture system can thus be important in evaluating physiological effects of isomeric fatty acids on cellular metabolic processes.  相似文献   

16.
We have enriched human fibroblasts with oleic acid, with linoleic acid and with eicosapentaenoic acid. The accumulation of cholesteryl esters in the cells and the rate of esterification of cholesterol by microsomal acyl-CoA:cholesterol acyltransferase (ACAT) were measured in these cells. Cholesteryl ester levels were lower in cells enriched with eicosapentaenoic acid compared with cells enriched with oleate or linoleate. We also observed significantly lower ACAT activities in the microsomes from fibroblasts enriched with the n-3 polyunsaturated fatty acids relative to cells enriched with oleic acid or linoleic acid. We suggest that the presence of n-3 polyunsaturated fatty acids might suppress cholesteryl ester accumulation and inhibit atherogenesis.  相似文献   

17.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3-7-fold) and phosphatidylethanolamine (2-3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

18.
The phospholipid composition of the butyric acid-producing clostridia is responsive to the degree of enrichment of the lipids with cis-unsaturated fatty acids. When Clostridium butyricum and Clostridium beijerinckii are grown on oleic acid in media devoid of biotin, the acyl and alk-1-enyl chains of the phospholipids become highly enriched with 18:1 and C19-cyclopropane. Under these conditions there is a marked increase in the glycerol acetals of the major plasmalogens of these organisms. We have grown both species on mixtures of palmitate and oleate in the absence of biotin. The alk-1-enyl chains were highly enriched with C18-unsaturated and C19-cyclopropane residues at all but the highest ratios of palmitate to oleate (80:20, w/w) added to the medium. At ratios of palmitate to oleate greater than or equal to 40:60, the saturated acid was incorporated predominantly into the phospholipid acyl chains in both organisms. The effects of increasing unsaturation of the acyl chains as the ratio of oleate to palmitate was increased was examined in C. butyricum. In cells grown on mixtures of palmitate and oleate equal to or exceeding 40% palmitate, the ratio of glycerol acetal lipid to total phosphatidylethanolamine (PE) was relatively constant. As the proportion of oleic acid added to the medium was increased, the ratio of glycerol acetal lipid to PE increased from 0.7 to 2.0. Thus the ratio of the polar lipids appears to respond to the content of phospholipids that contain two unsaturated chains. The fraction of PE present as plasmalogen remained relatively stable (0.82 +/- 0.05) at varying ratios of medium oleic and palmitic acids. Both the glycerol acetal of ethanolamine plasmalogen, and ethanolamine plasmalogen, are shown to be 80% or more in the outer monolayer of the cell membrane. These two polar lipids represent approx. 50% of the phospholipids in cells grown on exogenous fatty acid. The bulk of the remainder is polyglycerol phosphatides. We suggest that the ability of both species to grow with highly unsaturated membranes is related to their ability to modulate their polar lipid composition.  相似文献   

19.
The effect of dietary oleate levels (18, 39, 57 and 74% of total fatty acids) on various lipid parameters was studied in rats given cholesterol-enriched diets containing fat with a constant P/S (3.1–3.2) and n-6/n-3 (5.4–6.2) ratio. High-oleic safflower oil was used as a source of oleic acid, and was replaced stepwise with a mixture of cotton seed and perilla seed oils. After three weeks of feeding, there were no significant differences in the concentrations of serum and liver cholesterol, although they tended to increase with an increasing dietary oleate level. A hypotriglyceridemic trend was observed toward an increasing proportion of oleic acid. The linoleate desaturation index, (dihomo-γ-linolenic acid + arachidonic acid)/linoleic acid, in tissue phosphatidylcholine tended to increase with an increasing proportion of oleate, whereas the production of prostacyclin by the aorta and thromboxane A2 by platelets was independent of the dietary oleate level. These results indicate that dietary oleate did not significantly modify the effect of polyunsaturated fatty acids on various lipid parameters under dietary conditions at which the P/S and n-6/n-3 ratios of the dietary fat were kept at an appropriate level to prevent ischemic heart disease.  相似文献   

20.
An endogenous inhibitor of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase was isolated from the 105,000 X g supernatant fraction of lungs of pregnant rabbits following DEAE chromatography. The material was heat stable and was resistant to pronase treatment. The inhibitor contained a mixture of saturated and mono-unsaturated fatty acids and cholesterol with palmitate and oleate representing the major fatty acids in the inhibitory factor. The factor inhibited prostaglandin dehydrogenase activity but had only minor effects on the activity of NAD+-dependent alcohol and lactate dehydrogenases or the NADP+-dependent isocitrate dehydrogenase. In an attempt to develop a greater understanding of the inhibitory action of fatty acids on prostaglandin dehydrogenase activity, a variety of standard fatty acids were examined for their ability to decrease enzymic activity. Oleate and palmitate inhibited enzymic activity by 70% at 10 microM, whereas arachidonate and myristate were only 30% inhibitory at this concentration. A comparison among the 18-carbon-containing fatty acids demonstrated that oleate was more potent than linoleate and linolenate in inhibiting prostaglandin dehydrogenase activity. The coenzyme A derivatives of oleate, linoleate and linolenate were less inhibitory than the free fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号