首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial HtrAs are serine proteases engaged in extracytoplasmic protein quality control and are required for the virulence of several pathogenic species. The proteolytic activity of HtrA (DegP) from Escherichia coli, a model prokaryotic HtrA, is stimulated by stressful conditions; the regulation of this process is mediated by the LA, LD, L1, L2, and L3 loops. The precise mechanism of action of the LA loop is not known due to a lack of data concerning its three-dimensional structure as well as its mode of interaction with other regulatory elements. To address these issues we generated a theoretical model of the three-dimensional structure of the LA loop as per the resting state of HtrA and subsequently verified its correctness experimentally. We identified intra- and intersubunit contacts that formed with the LA loops; these played an important role in maintaining HtrA in its inactive conformation. The most significant proved to be the hydrophobic interactions connecting the LA loops of the hexamer and polar contacts between the LA′ (the LA loop on an opposite subunit) and L1 loops on opposite subunits. Disturbance of these interactions caused the stimulation of HtrA proteolytic activity. We also demonstrated that LA loops contribute to the preservation of the integrity of the HtrA oligomer and to the stability of the monomer. The model presented in this work explains the regulatory role of the LA loop well; it should also be applicable to numerous Enterobacteriaceae pathogenic species as the amino acid sequences of the members of this bacterial family are highly conserved.  相似文献   

2.
The GroES binding site at the apical domain of GroEL, mostly consisting of hydrophobic residues, overlaps largely with the substrate polypeptide binding site. Essential contribution of hydrophobic interaction to the binding of both GroES and polypeptide was exemplified by the mutant GroEL(L237Q) which lost the ability to bind either of them. The binding site, however, contains three hydrophilic residues, E238, T261, and N265. For GroES binding, N265 is essential since GroEL(N265A) is unable to bind GroES. E238 contributes to rapid GroES binding to GroEL because GroEL(E238A) is extremely sluggish in GroES binding. Polypeptide binding was not impaired by any mutations of E238A, T261A, and N265A. Rather, these mutants, especially GroEL(N265A), showed stronger polypeptide binding affinity than wild-type GroEL. Thus, these hydrophilic residues have a dual role; they help GroES binding on one hand but attenuate polypeptide binding on the other hand.  相似文献   

3.
《Journal of molecular biology》2019,431(17):3068-3080
SUV420H1 is a protein lysine methyltransferase that introduces di- and trimethylation of H4K20 and is frequently mutated in human cancers. We investigated the functional effects of eight somatic cancer mutations on SUV420H1 activity in vitro and in cells. One group of mutations (S255F, K258E, A269V) caused a reduction of the catalytic activity on peptide and nucleosome substrates. The mutated amino acids have putative roles in AdoMet binding and recognition of H4 residue D24. Group 2 mutations (E238V, D249N, E320K) caused a reduction of activity on peptide substrates, which was partially recovered when using nucleosomal substrates. The corresponding residues could have direct or indirect roles in peptide and AdoMet binding, but the effects of the mutations can be overcome by additional interactions between SUV420H1 and the nucleosome substrate. The third group of mutations (S283L, S304Y) showed enhanced activity with peptide substrates when compared with nucleosomal substrates, suggesting that these residues are involved in nucleosomal interaction or allosteric activation of SUV420H1 after nucleosome binding. Group 2 and 3 mutants highlight the role of nucleosomal contacts for SUV420H1 regulation in agreement with the high activity of this enzyme on nucleosomal substrates. Strikingly, seven of the somatic cancer mutations studied here led to a reduction of the catalytic activity of SUV420H1 in cells, suggesting that SUV420H1 activity might have a tumor suppressive function. This could be explained by the role of H4K20me2/3 in DNA repair, suggesting that loss or reduction of SUV420H1 activity could contribute to a mutator phenotype in cancer cells.  相似文献   

4.
The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity   总被引:10,自引:0,他引:10  
Presenilin mutations are responsible for most cases of autosomal dominant inherited forms of early onset Alzheimer disease. Presenilins play an important role in amyloid beta-precursor processing, NOTCH receptor signaling, and apoptosis. However, the molecular mechanisms by which presenilins regulate apoptosis are not fully understood. Here, we report that presenilin-1 (PS1) regulates the proteolytic activity of the serine protease Omi/HtrA2 through direct interaction with its regulatory PDZ domain. We show that a peptide corresponding to the cytoplasmic C-terminal tail of PS1 dramatically increases the proteolytic activity of Omi/HtrA2 toward the inhibitor of apoptosis proteins and beta-casein and induces cell death in an Omi/HtrA2-dependent manner. Consistent with these results, ectopic expression of full-length PS1, but not PS1 lacking the C-terminal PDZ binding motif, potentiated Omi/HtrA2-induced cell death. Our results suggest that the C terminus of PS1 is an activation peptide ligand for the PDZ domain of Omi/HtrA2 and may regulate the protease activity of Omi/HtrA2 after its release from the mitochondria during apoptosis. This mechanism of Omi/HtrA2 activation is similar to the mechanism of activation of the related bacterial DegS protease by the outer-membrane porins.  相似文献   

5.
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.  相似文献   

6.
Bacterial HtrAs are proteases engaged in extracytoplasmic activities during stressful conditions and pathogenesis. A model prokaryotic HtrA (HtrA/DegP from Escherichia coli) requires activation to cleave its substrates efficiently. In the inactive state of the enzyme, one of the regulatory loops, termed LA, forms inhibitory contacts in the area of the active center. Reduction of the disulfide bond located in the middle of LA stimulates HtrA activity in vivo suggesting that this S-S bond may play a regulatory role, although the mechanism of this stimulation is not known. Here, we show that HtrA lacking an S-S bridge cleaved a model peptide substrate more efficiently and exhibited a higher affinity for a protein substrate. An LA loop lacking the disulfide was more exposed to the solvent; hence, at least some of the interactions involving this loop must have been disturbed. The protein without S-S bonds demonstrated lower thermal stability and was more easily converted to a dodecameric active oligomeric form. Thus, the lack of the disulfide within LA affected the stability and the overall structure of the HtrA molecule. In this study, we have also demonstrated that in vitro human thioredoxin 1 is able to reduce HtrA; thus, reduction of HtrA can be performed enzymatically.  相似文献   

7.
Ryan BJ  O'Fágáin C 《Biochimie》2008,90(9):1414-1421
Horseradish peroxidase (HRP) has long attracted intense research interest and is used in many biotechnological fields, including diagnostics, biosensors and biocatalysis. Enhancement of HRP catalytic activity and/or stability would further increase its usefulness. Based on prior art, we substituted solvent-exposed lysine and glutamic acid residues near the proximal helix G (Lys 232, 241; Glu 238, 239) and between helices F and F' (Lys 174). Three single mutants (K232N, K232F, K241N) demonstrated increased stabilities against heat (up to 2-fold) and solvents (up to 4-fold). Stability gains are likely due to improved hydrogen bonding and space-fill characteristics introduced by the relevant substitution. Two double mutants showed stability gains but most double mutations were non-additive and non-synergistic. Substitutions of Lys 174 or Glu 238 were destabilising. Unexpectedly, notable alterations in steady-state V(m)/E values occurred with reducing substrate ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)), despite the distance of the mutated positions from the active site.  相似文献   

8.
Group 1B human pancreatic secretory phospholipase A2 (hp-sPLA2), a digestive enzyme synthesized by pancreatic acinar cells and present in pancreatic juice, do not have antibacterial activity towards Escherichia coli. Our earlier results suggest that the N-terminal first ten amino acid residues of hp-sPLA2 constitute major portion of the membrane binding domain of full-length enzyme and is responsible for the precise orientation of enzyme on the membrane surface by inserting into the lipid bilayers (Pande et al. (2006) Biochemistry, 45,12436–12447). In this study we report the antibacterial properties of a peptide (AVWQFRKMIK-CONH2; N10 peptide), which corresponds to the N-terminal first ten amino acid residues of hp-sPLA2, against E. coli. Full-length hp-sPLA2, which contains this peptide sequence as N-terminal α-helix, did not showed detectable antibacterial activity. Presence of physiological concentration of salt or preincubation of N10 peptide with soluble anionic polymer inhibits the antibacterial activity indicating the importance of electrostatic interaction in binding of peptide to bacterial membrane. Addition of peptide resulted in destabilization of outer as well as inner cytoplasmic membrane of E. coli suggesting bacterial membranes to be the main target of action. N10 peptide exhibits strong synergism with lysozyme and potentiates the antibacterial activity of lysozyme. The peptide was inactive against human erythrocyte. Our result shows for the first time that a peptide fragment of hp-sPLA2 possesses antibacterial activity towards E. coli and at subinhibitory concentration and can potentiate the antibacterial activity of membrane active enzyme. These observations suggest that N10 peptide may play an important role in the antimicrobial activity of pancreatic juice.  相似文献   

9.
The C2 domain of cytosolic phospholipase A2 (cPLA2) is involved in the Ca2+-dependent membrane binding of this protein. To identify protein residues in the C2 domain of cPLA2 essential for its Ca2+ and membrane binding, we selectively mutated Ca2+ ligands and putative membrane-binding residues of cPLA2 and measured the effects of mutations on its enzyme activity, membrane binding affinity, and monolayer penetration. The mutations of five Ca2+ ligands (D40N, D43N, N65A, D93N, N95A) show differential effects on the membrane binding and activation of cPLA2, indicating that two calcium ions bound to the C2 domain have differential roles. The mutations of hydrophobic residues (F35A, M38A, L39A, Y96A, Y97A, M98A) in the calcium binding loops show that the membrane binding of cPLA2 is largely driven by hydrophobic interactions resulting from the penetration of these residues into the hydrophobic core of the membrane. Leu39 and Val97 are fully inserted into the membrane, whereas Phe35 and Tyr96 are partially inserted. Finally, the mutations of four cationic residues in a beta-strand (R57E/K58E/R59E/R61E) have modest and negligible effects on the binding of cPLA2 to zwitterionic and anionic membranes, respectively, indicating that they are not directly involved in membrane binding. In conjunction with our previous study on the C2 domain of protein kinase C-alpha (Medkova, M., and Cho, W. (1998) J. Biol. Chem. 273, 17544-17552), these results demonstrate that C2 domains are not only a membrane docking unit but also a module that triggers membrane penetration of protein and that individual Ca2+ ions bound to the calcium binding loops play differential roles in the membrane binding and activation of their parent proteins.  相似文献   

10.
HtrA2/Omi is a mammalian mitochondrial serine protease, and was found to have dual roles in mammalian cells, not only acting as an apoptosis-inducing protein but also maintaining mitochondrial homeostasis. PDZ domain is one of the most important protein-protein interaction modules and is involved in a variety of important cellular functions, such as signal transduction, degradation of proteins, and formation of cytoskeleton. Recently, it was reported that the PDZ domain of HtrA2/Omi might regulate proteolytic activity through its interactions with ligand proteins. In this study, we rapidly characterized the binding properties of HtrA2/Omi PDZ domain by validation screening of the PDZ ligand library with yeast two-hybrid approach. Then, we predicted its novel ligand proteins in human proteome and reconfirmed them in the yeast two-hybrid system. Finally, we analyzed the smallest networks bordered by the shortest path length between the protein pairs of novel interactions to evaluate the confidence of the identified interactions. The results revealed some novel binding properties of HtrA2/Omi PDZ domain. Besides the reported Class II PDZ motif, it also binds to Class I and Class III motifs, and exhibits restricted variability at P−3, which means that the P−3 residue is selected according to the composition of the last three residues. Seven novel ligand proteins of HtrA2/Omi PDZ domain were discovered, providing significant clues for further clarifying the roles of HtrA2/Omi. Moreover, this study proves the high efficiency and practicability of the newly developed validation screening of candidate ligand library method for binding property characterization of peptide-binding domains.  相似文献   

11.
General-diffusion porins form large β-barrel channels that control the permeability of the outer membrane of gram-negative bacteria to nutrients, some antibiotics, and external signals. Here, we have analyzed the effects of mutations in the OmpU porin of Vibrio cholerae at conserved residues that are known to affect pore properties in the Escherichia coli porins OmpF and OmpC. Various phenotypes were investigated, including sensitivity to β-lactam antibiotics, growth on large sugars, and sensitivity to and biofilm induction by sodium deoxycholate, a major bile component that acts as an external signal for multiple cellular responses of this intestinal pathogen. Overall, our results indicate that specific residues play different roles in controlling the passage of various compounds. Mutations of barrel wall arginine residues that protrude in the pore affect pore size and growth in the presence of large sugars or sodium deoxycholate. Sensitivity to large cephalosporins is mostly affected by D116, located on the L3 loop, whose homolog in E. coli, OmpF, is a known binding determinant for these drugs. L3 loop residues also affect biofilm induction. The results are interpreted in terms of a homology model based on the structures of E. coli porins.  相似文献   

12.
The delineation of molecular structures that dictate Src homology 3 (SH3) domain recognition of specific proline-rich ligands is key to understanding unique functions of diverse SH3 domain-containing signalling molecules. We recently established that assembly of the phagocyte NADPH oxidase involves multiple SH3 domain interactions between several oxidase components (p47phox, p67phox, and p22phox). p47phox was shown to play a central role in oxidase activation in whole cells by mediating interactions with both the transmembrane component p22phox and cytosolic p67phox. To understand the specific roles of each SH3 domain of p47phox in oxidase assembly and activation, we mutated critical consensus residues (Tyr167 or Tyr237-->Leu [Y167L or Y237L], W193R or W263R, and P206L or P276L) on each of their binding surfaces. The differential effects of these mutations indicated that the first SH3 domain is responsible for the p47phox-p22phox interaction and plays a predominant role in oxidase activity and p47phox membrane assembly, while the second p47phox SH3 domain interacts with the NH2-terminal domain of p67phox. Binding experiments using the isolated first SH3 domain also demonstrated its involvement in intramolecular interactions within p47phox and showed a requirement for five residues (residues 151 to 155) on its N-terminal boundary for binding to p22phox. The differential effects of nonconserved-site mutations (W204A or Y274A and E174Q or E244Q) on whole-cell oxidase activity suggested that unique contact residues within the third binding pocket of each SH3 domain influence their ligand-binding specificities.  相似文献   

13.
Determining the network of residues that transmit allosteric signals is crucial to understanding the function of biological nanomachines. During the course of a reaction cycle, biological machines in general, and Escherichia coli chaperonin GroEL in particular, undergo large-scale conformational changes in response to ligand binding. Normal mode analyses, based on structure-based coarse-grained models where each residue is represented by an α carbon atom, have been widely used to describe the motions encoded in the structures of proteins. Here, we propose a new Cα-side chain elastic network model of proteins that includes information about the physical identity of each residue and accurately accounts for the side-chain topology and packing within the structure. Using the Cα-side chain elastic network model and the structural perturbation method, which probes the response of a local perturbation at a given site at all other sites in the structure, we determine the network of key residues (allostery wiring diagram) responsible for the T → R and R″ → T transitions in GroEL. A number of residues, both within a subunit and at the interface of two adjacent subunits, are found to be at the origin of the positive cooperativity in the ATP-driven T → R transition. Of particular note are residues G244, R58, D83, E209, and K327. Of these, R38, D83, and K327 are highly conserved. G244 is located in the apical domain at the interface between two subunits; E209 and K327 are located in the apical domain, toward the center of a subunit; R58 and D83 are equatorial domain residues. The allostery wiring diagram shows that the network of residues are interspersed throughout the structure. Residues D83, V174, E191, and D359 play a critical role in the R″ → T transition, which implies that mutations of these residues would compromise the ATPase activity. D83 and E191 are also highly conserved; D359 is moderately conserved. The negative cooperativity between the rings in the R″ → T transition is orchestrated through several interface residues within a single ring, including N10, E434, D435, and E451. Signal from the trans ring that is transmitted across the interface between the equatorial domains is responsible for the R″ → T transition. The cochaperonin GroES plays a passive role in the R″ → T transition. Remarkably, the binding affinity of GroES for GroEL is allosterically linked to GroEL residues 350-365 that span helices K and L. The movements of helices K and L alter the polarity of the cavity throughout the GroEL functional cycle and undergo large-scale motions that are anticorrelated with the other apical domain residues. The allostery wiring diagrams for the T → R and R″ → T transitions of GroEL provide a microscopic foundation for the cooperativity (anticooperativity) within (between) the ring (rings). Using statistical coupling analysis, we extract evolutionarily linked clusters of residues in GroEL and GroES. We find that several substrate protein binding residues as well as sites related to ATPase activity belong to a single functional network in GroEL. For GroES, the mobile loop residues and GroES/GroES interface residues are linked.  相似文献   

14.
Catalase-peroxidases (KatG) are bifunctional heme peroxidases with an overwhelming catalatic activity. The structures show that the buried heme b is connected to the exterior of the enzyme by a main channel built up by KatG-specific loops named large loop LL1 and LL2, the former containing the highly conserved sequence Met-Gly-Leu-Ile-Tyr-Val-Asn-Pro-Glu-Gly. LL1 residues Ile248, Asn251, Pro252, and Glu253 of KatG from Synechocystis are the focus of this study because of their exposure to the solute matrix of the access channel. In particular, the I248F, N251L, P252A, E253Q, and E253D mutants have been analyzed by UV-visible and resonance Raman spectroscopies in combination with steady-state and presteady-state kinetic analyses. Exchange of these residues did not alter the kinetics of cyanide binding or the overall peroxidase activity. Moreover, the kinetics of compound I formation and reduction by one-electron donors was similar in the variants and the wild-type enzyme. However, the turnover numbers of the catalase activity of I248F, N251L, E253Q, and E253D were only 12.3, 32.6, 25, and 42% of the wild-type activity, respectively. These findings demonstrate that the oxidation reaction of hydrogen peroxide (not its reduction) was affected by these mutations. The altered kinetics allowed us to monitor the spectral features of the dominating redox intermediate of E253Q in the catalase cycle. Resonance Raman data and structural analysis demonstrated the existence of a very rigid and ordered structure built up by the interactions of these residues with distal side and also (via LL1) proximal side amino acids, with the heme itself, and with the solute matrix in the channel. The role of Glu253 and the other investigated channel residues in maintaining an ordered matrix of oriented water dipoles, which guides hydrogen peroxide to its site of oxidation, is discussed.  相似文献   

15.
HtrA (high temperature requirement A), a periplasmic heat-shock protein, functions as a molecular chaperone at low temperatures, and its proteolytic activity is turned on at elevated temperatures. To investigate the mechanism of functional switch to protease, we determined the crystal structure of the NH(2)-terminal protease domain (PD) of HtrA from Thermotoga maritima, which was shown to retain both proteolytic and chaperone-like activities. Three subunits of HtrA PD compose a trimer, and multimerization architecture is similar to that found in the crystal structures of intact HtrA hexamer from Escherichia coli and human HtrA2 trimer. HtrA PD shares the same fold with chymotrypsin-like serine proteases, but it contains an additional lid that blocks access the of substrates to the active site. A corresponding lid found in E. coli HtrA is a long loop that also blocks the active site of another subunit. These results suggest that the activation of the proteolytic function of HtrA at elevated temperatures might occur by a conformational change, which includes the opening of the helical lid to expose the active site and subsequent rearrangement of a catalytic triad and an oxyanion hole.  相似文献   

16.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

17.
Ynm3 is the only budding yeast protein possessing a combination of serine protease and postsynaptic density 95/disc-large/zona occludens domains, a defining feature of the high temperature requirement A (HtrA) protein family. The bacterial HtrA/DegP is involved in protective stress response to aid survival at higher temperatures. The role of mammalian mitochondrial HtrA2/Omi in protein quality control is unclear, although loss of its protease activity results in susceptibility toward Parkinson's disease, in which mitochondrial dysfunction and impairment of protein folding and degradation are key pathogenetic features. We studied the role of the budding yeast HtrA, Ynm3, with respect to unfolding stresses. Similar to Escherichia coli DegP, we find that Ynm3 is a dual chaperone-protease. Its proteolytic activity is crucial for cell survival at higher temperature. Ynm3 also exhibits strong general chaperone activity, a novel finding for a eukaryotic HtrA member. We propose that the chaperone activity of Ynm3 may be important to improve the efficiency of proteolysis of aberrant proteins by averting the formation of nonproductive toxic aggregates and presenting them in a soluble state to its protease domain. Suppression studies with Δynm3 led to the discovery of chaperone activity in a nucleolar peptidyl-prolyl cis-trans isomerase, Fpr3, which could partly relieve the heat sensitivity of Δynm3.  相似文献   

18.
The amino acid sequences necessary for entomocidal activity of the CryIA(b) protoxin of Bacillus thuringiensis were determined. Introduction of stop codons behind codons Arg601, Phe604 or Ala607 showed that amino acid residues C-terminal to Ala607 are not required for insecticidal activity and that activation by midgut proteases takes place distal to Ala607. The two shortest polypeptides, deleted for part of the highly conserved β-strand, were prone to proteolytic degradation, explaining their lack of toxicity. Apparently, this β-strand is essential for folding of the molecule into a stable conformation. Proteolytic activation at the N-terminus was investigated by removing the first 28 codons, resulting in a translation product extending from amino acid 29 to 607. This protein appeared to be toxic not only to susceptible insect larvae such as Manduca sexta and Heliothis virescens, but also to Escherichia coli cells. An additional mutant, encoding only amino acid residues 29–429, encompassing the complete putative pore forming domain, but lacking a large part of the receptor-binding domain, was similarly toxic to E. coli cells. This suggests a role for the N-terminal 28 amino acids in rendering the toxin inactive in Bacillus thuringiensis, and indicates that the cytolytic potential of the pore forming domain is only realized after proteolytic removal of these residues by proteases in the insect gut. In line with this hypothesis are results obtained with a mutant protein in which Arg28 at the cleavage site was replaced by Asp. This substitution prevented the protein from being cleaved by trypsin in vitro, and reduced its toxicity to M. sexta larvae.  相似文献   

19.
A bioinformatic approach was used for the identification of residues that are conserved within the Nramp family of metal transporters. Site-directed mutagenesis was then carried out to change six conserved acidic residues (i.e., Asp-34, Glu-102, Asp-109, Glu-112, Glu-154, and Asp-238) in the E. coli Nramp homolog mntH. Of these six, five of them, Asp-34, Glu-102, Asp-109, Glu-112, and Asp-238 appear to be important for function since conservative substitutions at these sites result in a substantial loss of transport function. In addition, all of the residues within the signature sequence of the Nramp family, DPGN, were also mutated in this study. Each residue was changed to several different side chains, and of ten site-directed mutations made in this motif, only P35G showed any measurable level of 54Mn2+ uptake with a Vmax value of approximately 10% of wild-type and a slightly elevated Km value. Overall, the data are consistent with a model where helix breakers in the conserved DPGN motif in TMS-1 provide a binding pocket in which Asp-34, Asn-37, Asp-109, Glu-112 (and possibly other residues) are involved in the coordination of Mn2+. Other residues such as Glu-102 and Asp238 may play a role in the release of Mn2+ to the cytoplasm or may be involved in maintaining secondary structure.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

20.
Mammalian expression vectors are used to overexpress genes of interest in mammalian cells. High temperature requirement protein A1 (HtrA1), used as a specific target, was expressed from the pHA-M-HtrA1 plasmid in HEK293T cells, inducing cell death. Expression of HtrA1 was driven by the pHA-M-HtrA1 mammalian expression vector in E. coli resulting in growth suppression of E. coli in an HtrA1 serine protease-dependent manner. By using various combinations of promoters, target genes and N-terminal tags, the T7 promoter and N-terminal HA tag in the mammalian expression vector were shown to be responsible for expression of target genes in E. coli. Thus the pHA-M-HtrA1 plasmid can be used as a novel, rapid pre-test system for expression and cytotoxicity of the specific target gene in E. coli before assessing its functions in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号