首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Progesterone receptors (PR) are present in two isoforms, PR-A and PR-B. The B-upstream segment (BUS) of PR-B is a 164 amino acid N-terminal extension that is missing in PR-A and is responsible for the functional differences reported between the two isoforms. BUS contains an activation function (AF3) which is defined by a core domain between residues 54–154 whose activity is dependent upon a single Trp residue and two LXXLL motifs. We have also identified sites both within and outside of BUS that repress the strong synergism between AF3 and AF1 in the N-terminal region and AF2 in the hormone binding domain. One of these repressor sites is a consensus binding motif for the small ubiquitin-like modifier protein, SUMO-1 (387IKEE). The DNA binding domain (DBD) structure is also important for function. When BUS is linked to the glucocorticoid receptor DBD, AF3 activity is substantially attenuated, suggesting that binding to a DNA response element results in allosteric communication between the DBD and N-terminal functional regions. Lastly, biochemical and biophysical analyses of highly purified PR-B and PR-A N-terminal regions reveal that they are unstructured unless the DBD is present. Thus, the DBD stabilizes N-terminal structure. We propose a model in which the DBD through DNA binding, and BUS through protein–protein interactions, stabilize active receptor conformers within an ensemble distribution of active and inactive conformational states. This would explain why PR-B are stronger transactivators than PR-A.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Two protein fragments containing the DNA-binding domain (DBD) of the glucocorticoid receptor (GR) have been studied by two-dimensional 1H NMR spectroscopy. The two peptides (93 and 115 residues, respectively) contain a common segment corresponding to residues C440-I519 of the rat GR or residues C421-I500 of the human GR and include two Zn-binding "finger" domains. The structures of this segment are almost identical in the two protein fragments, as judged from chemical shifts and sequential NOE connectivities. More than 90% of all observable 1H resonances within a 71-residue segment encompassing C440-R510 (rat GR) could be sequentially assigned by standard techniques, and stereospecific assignments could be made for the methyl groups in four valine residues within this segment. Sequential NOE connectivities indicate several elements of secondary structure including two alpha-helical segments consisting of residues S459-E469 and P493-G504, a type I reverse turn between residues R479 and C482, a type II reverse turn between residues L475 and G478, and several regions of extended peptide conformation. No evidence for alpha-helical conformation was found within the two putative zinc-finger domains, indicating that the structures of these domains differ from that of TFIIIA-type zinc fingers. The observation of some very slowly exchanging amide protons in the N-terminal (CI) domain of the DBD in combination with slow rotation of the Y452 aromatic ring indicates that this domain has a restricted conformational flexibility compared to the C-terminal (CII) domain. We also observe several long-range NOE connectivities within C440-R510, suggesting that the sequential assignments presented here will provide a basis for a complete structure determination of this segment of the GR.  相似文献   

13.
14.
15.
Molecular dynamics simulations have been performed on the glucocorticoid receptor DNA binding domain (GR DBD) in aqueous solution as a dimer in complex with DNA and as a free monomer. In the simulated complex, we find a slightly increased bending of the DNA helix axis compared with the crystal structure in the spacer region of DNA between the two half-sites that are recognized by GR DBD. The bend is mainly caused by an increased number of interactions between DNA and the N-terminal extended region of the sequence specifically bound monomer. The recognition helices of GR DBD are pulled further into the DNA major groove leading to a weakening of the intrahelical hydrogen bonds in the middle of the helices. Many ordered water molecules with long residence times are found at the intermolecular interfaces of the complex. The hydrogen-bonding networks (including water bridges) on either side of the DNA major groove involve residues that are highly conserved within the family of nuclear receptors. Very similar hydrogen-bonding networks are found in the estrogen receptor (ER) DBD in complex with DNA, which suggests that this is a common feature for proper positioning of the recognition helix in ER DBD and GR DBD.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号