首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphyromonas gingivalis peptidylarginine deiminase (PAD) catalyzes the deimination of peptidylarginine residues of various peptides to produce peptidylcitrulline and ammonia. P. gingivalis is associated with adult-onset periodontitis and cardiovascular disease, and its proliferation depends on secretion of PAD. We have expressed two recombinant forms of the P. gingivalis PAD in Escherichia coli, a truncated form with a 43-amino acid N-terminal deletion and the full-length form of PAD as predicted from the DNA sequence. Both forms contain a poly-His tag and Xpress epitope at the N-terminus to aid in detection and purification. The activities and stabilities of these two forms have been evaluated. PAD is cold sensitive; it aggregates within 30 min at 4 °C, and optimal storage conditions are at 25 °C in the presence of a reducing agent. PAD is not a metalloenzyme and does not need a cofactor for catalysis or stability. Multiple l-arginine analogs, various arginine-containing peptides, and free l-arginine were used to evaluate substrate specificity and determine kinetic parameters.  相似文献   

2.
A new β-mannosidase gene, designated as man2S27, was cloned from Streptomyces sp. S27 using the colony PCR method and expressed in Escherichia coli BL21 (DE3). The full-length gene consists of 2499 bp and encodes 832 amino acids with a calculated molecular mass of 92.6 kDa. The amino acid sequence shares highest identity of 62.6% with the mannosidase Man2A from Cellulomonas fimi which belongs to the glycoside hydrolase family 2. Purified recombinant Man2S27 showed optimal activity at pH 7.0 and 50 °C. The specific activity, Km, and kcat values for p-nitrophenyl-β-d-mannopyranoside (p-NP-β-MP) were 35.3 U mg-1, 0.23 mM, and 305 s-1, respectively. Low transglycosylation activity was observed when Man2S27 was incubated with p-NP-β-MP (glycosyl donor) and methyl-α-d-mannopyranoside (p-NP-α-MP) (acceptor) at 50 °C and pH 7.0, and a small amount of methylmannobioside was synthesized. Using locust bean gum as the substrate, more reducing sugars were liberated by the synergistic action of Man2S27 and β-mannanase (Man5S27), and the synergy degree in sequential reactions with Man5S27 firstly and Man2S27 secondly was higher than that in the simultaneous reactions.  相似文献   

3.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

4.
Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (> 4 MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors. To amend this, we probed the active site by determining the pH dependence of TPP II catalysis. Access to pure enzyme is a prerequisite for kinetic investigations and herein we introduce the first efficient purification system for heterologously expressed mammalian TPP II. The pH dependence of kinetic parameters for hydrolysis of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was determined for murine, human and Drosophila melanogaster TPP II as well as mutant variants thereof. The investigation demonstrated that TPP II, in contrast to subtilisin, has a bell-shaped pH dependence of kcatapp/KM probably due to deprotonation of the N-terminal amino group of the substrate at higher pH. Since both the KM and kcatapp are lower for cleavage of AAA-pNA than for AAF-pNA we propose that the former can bind non-productively to the active site of the enzyme, a phenomenon previously observed with some substrates for subtilisin. Two mutant variants, H267A and D387G, showed bell-shaped pH-dependence of kcatapp, possibly due to an impaired protonation of the leaving group. This work reveals previously unknown differences between TPP II orthologues and subtilisin as well as features that might be conserved within the entire family of subtilisin-like serine peptidases.  相似文献   

5.
Divalent metal ions are necessary in the self splicing reaction of group I introns, and we report that metal interaction to the 2′ position of guanosine for the Azoarcus ribozyme is required for catalysis. Moreover, this metal coordination promotes the guanosine-substrate coupled binding to the ribozyme, which is another conserved feature seen across phylogenetic boundaries. Typically there is a 4-9-fold difference in binding of G to Efree versus E · S. In the Tetrahymena ribozyme’s case this substrate-guanosine communication was attributed to conformational change(s) that lead to cooperative binding of the two cofactors which is almost nonexistent at low temperatures (4 °C). In the prokaryotic Azoarcus ribozyme we also see a 4-5-fold difference in binding of the guanosine/substrate to Efree versus E · G or E · S at 10 °C that is attributed to guanosine-substrate coupling. This coupling is diminished when the metal (Mg2+) coordination to the 2′ is disrupted with use of 2′-amino-2′-deoxyguanosine. The coupling is restored when softer Mn2+ ions are added to the buffer. This evidence generalizes a model for group I ribozyme catalysis that involves metal coordination to the 2′ position of guanosine. However, we see one striking difference in that the guanosine-substrate coupling is reversed. In the Azoarcus system (10 °C) the guanosine/substrate binds 5-fold more tightly to Efree than to E · S or E · G, which is the opposite for Tetrahymena even when the later is run at 4 °C. One implication for this difference in coupling is that the Azoarcus is in a folded state well accommodated for guanosine or substrate binding. This initial binding actually causes a conformational change that retards the subsequent binding of the second cofactor, which contrasts what was found for the Tetrahymena ribozyme. These results indicate that while the role for the metal ions in the chemical catalysis is conserved across phylogenetic boundaries, there is variability in the folding pattern of the ribozyme that leads to phosphoryl transfer.  相似文献   

6.
Thioredoxins are small, ubiquitous redox enzymes that reduce protein disulfide bonds by using a pair of cysteine residues present in a strictly conserved WCGPC catalytic motif. The Escherichia coli cytoplasm contains two thioredoxins, Trx1 and Trx2. Trx2 is special because it is induced under oxidative stress conditions and it has an additional N-terminal zinc-binding domain. We have determined the redox potential of Trx2, the pKa of the active site nucleophilic cysteine, as well as the stability of the oxidized and reduced form of the protein. Trx2 is more oxidizing than Trx1 (-221 mV versus -284 mV, respectively), which is in good agreement with the decreased value of the pKa of the nucleophilic cysteine (5.1 versus 7.1, respectively). The difference in stability between the oxidized and reduced forms of an oxidoreductase is the driving force to reduce substrate proteins. This difference is smaller for Trx2 (ΔΔG°H2O = 9 kJ/mol and ΔTm = 7. 4 °C) than for Trx1 (ΔΔG°H2O = 15 kJ/mol and ΔTm = 13 °C). Altogether, our data indicate that Trx2 is a significantly less reducing enzyme than Trx1, which suggests that Trx2 has a distinctive function. We disrupted the zinc center by mutating the four Zn2+-binding cysteines to serine. This mutant has a more reducing redox potential (-254 mV) and the pKa of its nucleophilic cysteine shifts from 5.1 to 7.1. The removal of Zn2+ also decreases the overall stability of the reduced and oxidized forms by 3.2 kJ/mol and 5.8 kJ/mol, respectively. In conclusion, our data show that the Zn2+-center of Trx2 fine-tunes the properties of this unique thioredoxin.  相似文献   

7.
The dependence of the solution structure of neamine on pH was determined by NMR and AMBER molecular dynamics methods at pD 3.3, pD 6.5, and pD 7.4 in D2O at 25 °C. Unlike neamine structures at pD 3.3 and 6.5, which essentially showed only one conformer, slowly exchanging primary, P-state, and secondary, S-state, neamine conformers populated on the NMR time scale at ∼80% and ∼20%, respectively, were detected at pD 7.4 with kinetic constants kon(P→S) = 1.9771 s−1 and koff(S→P) = 1.1319 s−1. A tertiary, T-state, neamine species populated at ∼3% was also detected by NMR at pD 7.4. The pKa values determined by NMR titration experiments are pKa1 6.44 ± 0.13 for N3 of ring-II, pKa2 7.23 ± 0.09 for N2′ of ring-I, pKa3 7.77 ± 0.19 for N1 of ring-II, and pKa4 8.08 ± 0.15 for N6′ of ring-I. Ring-I and ring-II of the P-state neamine and ring-I of the S and T-states of neamine possess the 4C1 chair conformation between pD 3.3 and pD = 7.4. In contrast, ring-II of the S and T-states of neamine most likely adopt the 6rH1 half-chair conformation. The P and S-states of neamine exhibit a negative syn-ψ glycosidic geometry. The exocyclic aminomethyl group of ring-I adopts the gt exocyclic rotamer conformation around physiological pHs while the gg exocyclic rotamer conformation predominates in acidic solutions near and below pH 4.5. Neamine exists in the P-state as a mixture of tetra-/tri-/di-protonated species between pD 4.5 and pD 7.4, while the S-state neamine exist only in a di-protonated species around physiological pDs. The existence of the S-state neamine may facilitate binding of neamine-like aminoglycosides by favorable entropy of binding to the A-site of 16S ribosomal RNA, suggesting that novel aminoglycoside compounds carrying a S-state neamine pharmacophore can be developed.  相似文献   

8.
A milk coagulating protease was purified ∼10.2-fold to apparent homogeneity from ginger rhizomes in 34.9% recovery using ammonium sulfate fractionation, together with ion exchange and size exclusion chromatographic techniques. The molecular mass of the purified protease was estimated to be ∼36 kDa by SDS-PAGE, and exhibited a pI of 4.3. It is a glycoprotein with 3% carbohydrate content. The purified enzyme showed maximum activity at pH 5.5 and at a temperature of ∼60 °C. Its protease activity was strongly inhibited by iodoacetamide, E-64, PCMB, Hg2+ and Cu2+. Inhibition studies and N-terminal sequence classified the enzyme as a member of the cysteine proteases. The cleavage capability of the isolated enzyme was higher for αs-casein followed by β- and κ-casein. The purified enzyme differed in molecular mass, pI, carbohydrate content, and N-terminal sequence from previously reported ginger proteases. These results indicate that the purified protease may have potential application as a rennet substitute in the dairy industry.  相似文献   

9.
Metallo-β-lactamases catalyze the hydrolysis of most β-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum activity as dizinc species, the actual metal-to-protein stoichiometry and the affinity for zinc are not clear. We have further investigated the process of metal binding to the β-lactamase II from Bacillus cereus 569/H/9 (known as BcII). Zinc binding was monitored using complementary biophysical techniques, including circular dichroism in the far-UV, enzymatic activity measurements, competition with a chromophoric chelator, mass spectrometry, and nuclear magnetic resonance. Most noticeably, mass spectrometry and nuclear magnetic resonance experiments, together with catalytic activity measurements, demonstrate that two zinc ions bind cooperatively to the enzyme active site (with K1/K2 ≥ 5) and, hence, that catalysis is associated with the dizinc enzyme species only. Furthermore, competitive experiments with the chromophoric chelator Mag-Fura-2 indicates K2 < 80 nM. This contrasts with cadmium binding, which is clearly a noncooperative process with the mono form being the only species significantly populated in the presence of 1 molar equivalent of Cd(II). Interestingly, optical measurements reveal that although the apo and dizinc species exhibit undistinguishable tertiary structural organizations, the metal-depleted enzyme shows a significant decrease in its α-helical content, presumably associated with enhanced flexibility.  相似文献   

10.
The catalytic mechanism of 6-phosphogluconate dehydrogenase requires the inversion of a Lys/Glu couple from its natural ionization state. The pKa of these residues in free and substrate bound enzymes has been determined measuring by ITC the proton release/uptake induced by substrate binding at different pH values. Wt 6-phosphogluconate dehydrogenase from Trypanosoma brucei and two active site enzyme mutants, K185H and E192Q were investigated. Substrate binding was accompanied by proton release and was dependent on the ionization of a group with pKa 7.07 which was absent in the E192Q mutant. Kinetic data highlighted two pKa, 7.17 and 9.64, in the enzyme–substrate complex, the latter being absent in the E192Q mutant, suggesting that the substrate binding shifts Glu192 pKa from 7.07 to 9.64. A comparison of wt and E192Q mutant appears to show that the substrate binding shifts Lys185 pKa from 9.9 to 7.17. By comparing differences in proton release and the binding enthalpy of wt and mutant enzymes, the enthalpic cost of the change in the protonation state of Lys185 and Glu192 was estimated at ≈ 6.1 kcal/mol. The change in protonation state of Lys185 and Glu192 has little effect on Gibbs free energy, 240–325 cal/mol. However proton balance evidences the dissociation of other group(s) that can be collectively described by a single pKa shift from 9.1 to 7.54. This further change in ionization state of the enzyme causes an increase of free energy with a total cost of 1.2–2.3 kcal/mol to set the enzyme into a catalytically competent form.  相似文献   

11.
The effect of bicarbonate on the rates of the H2O2 oxidation of cysteine, gluthathione, and N-acetylcysteine to the corresponding disulfides was investigated. The relative oxidation rates at pH 8 for the different thiols are inversely related to the pKa values of the thiol groups, and the reactive nucleophiles are identified as the thiolate anions or their kinetic equivalents. The second-order rate constants at 25 °C for the reaction of the thiolate anions with hydrogen peroxide are 17 ± 2 M−1 s−1 for all three substrates. In the presence of bicarbonate (>25 mM), the observed rate of thiolate oxidation is increased by a factor of two or more, and the catalysis is proposed to be associated with the formation of peroxymonocarbonate from the equilibrium reaction of hydrogen peroxide with bicarbonate (via CO2). The calculated second-order rate constants for the direct reaction of the three thiolate anions with peroxymonocarbonate fall within the range of 900-2000 M−1 s−1. Further oxidation of disulfides by peroxymonocarbonate results in the formation of thiosulfonate and sulfonate products. These results strongly suggest that peroxymonocarbonate should be considered as a reactive oxygen species in aerobic metabolism with relevance in thiol oxidations.  相似文献   

12.
S100A3, a member of the EF-hand-type Ca2+-binding S100 protein family, is unique in its exceptionally high cysteine content and Zn2+ affinity. We produced human S100A3 protein and its mutants in insect cells using a baculovirus expression system. The purified wild-type S100A3 and the pseudo-citrullinated form (R51A) were crystallized with ammonium sulfate in N,N-bis(2-hydroxyethyl)glycine buffer and, specifically for postrefolding treatment, with Ca2+/Zn2+ supplementation. We identified two previously undocumented disulfide bridges in the crystal structure of properly folded S100A3: one disulfide bridge is between Cys30 in the N-terminal pseudo-EF-hand and Cys68 in the C-terminal EF-hand (SS1), and another disulfide bridge attaches Cys99 in the C-terminal coil structure to Cys81 in helix IV (SS2). Mutational disruption of SS1 (C30A + C68A) abolished the Ca2+ binding property of S100A3 and retarded the citrullination of Arg51 by peptidylarginine deiminase type III (PAD3), while SS2 disruption inversely increased both Ca2+ affinity and PAD3 reactivity in vitro. Similar backbone structures of wild type, R51A, and C30A + C68A indicated that neither Arg51 conversion by PAD3 nor SS1 alters the overall dimer conformation. Comparative inspection of atomic coordinates refined to 2.15−1.40 Å resolution shows that SS1 renders the C-terminal classical Ca2+-binding loop flexible, which are essential for its Ca2+ binding properties, whereas SS2 structurally shelters Arg51 in the metal-free form. We propose a model of the tetrahedral coordination of a Zn2+ by (Cys)3His residues that is compatible with SS2 formation in S100A3.  相似文献   

13.
Generally less glycosylation or deglycosylation has a detrimental effect on enzyme activity and stability. Increased production and secretion of cellobiase was earlier obtained in the presence of the glycosylation inhibitor 2-deoxy-d-glucose in filamentous fungus Termitomyces clypeatus [Mukherjee, S.; Chowdhury, S.; Ghorai, S.; Pal, S.; Khowala, S. Biotechnol. Lett.2006, 28, 1773-1778]. In this study the enzyme was purified from the culture medium by ultrafiltration and gel-permeation, ion-exchange and high-performance liquid chromatography, and its catalytic activity was six times higher compared to the control enzyme. Km and Vmax of the purified enzyme were measured as 0.187 mM and 0.018 U mg−1, respectively, using pNPG as the substrate. The enzyme had temperature and pH optima at 45 °C and pH 5.4, respectively, and retained full activity in a pH range of 5-8 and temperatures of 30-60 °C. Interestingly less glycosylated cellobiase was resistant towards proteolytic as well as endoglycosidase-H digestion and showed higher stability than native enzyme due to increased aggregation of the protein. The enzyme also showed higher specific activity in the presence of cellobiose and pNPG and less susceptibility towards salts and different chemical agents. The β-glucosidase can be considered as a potentially useful enzyme in various food-processing, pharmaceutical and fermentation industries.  相似文献   

14.
Transglutaminases (protein-glutamine:amine γ-glutamyltransferase, EC 2.3.2.13) are a family of calcium-dependent enzymes that catalyze an acyl transfer between glutamine residues and a wide variety of primary amines. When a lysine residue acts as the acyl-acceptor substrate, a γ-glutamyl-ε-lysine isopeptide bond is formed. This isopeptide bond formation represents protein cross-linking, which is critical to several biological processes. Microbial transglutaminase (mTG) is a bacterial variant of the transglutaminase family, distinct by virtue of its calcium-independent catalysis of the isopeptidic bond formation. Furthermore, mTG’s promiscuity in acyl-acceptor substrate preference highlights its biocatalytic potential. The acyl-donor substrate, however, is limited in its scope; the amino acid sequences flanking glutamine residues dramatically affect substrate specificity and activity. Here, we have developed and optimized a modified glutamate dehydrogenase assay with the intention of analyzing potential high-affinity peptides. This direct continuous assay presents significant advantages over the commonly used hydroxamate assay, including generality, sensitivity, and ease of manipulation. Furthermore, we identified 7M48 (WALQRPH), a high-affinity peptide that shows greater affinity with mTG (KM = 3 mM) than the commonly used Cbz-Gln-Gly (KM = 58 mM), attesting to its potential for application in biocatalysis and bioconjugation.  相似文献   

15.
An endo-(1→3)-β-d-glucanase (L0) with molecular mass of 37 kDa was purified to homogeneity from the crystalline style of the scallop Chlamys albidus. The endo-(1→3)-β-d-glucanase was extremely thermolabile with a half-life of 10 min at 37 °C. L0 hydrolyzed laminaran with Km ∼ 0.75 mg/mL, and catalyzed effectively transglycosylation reactions with laminaran as donor and p-nitrophenyl β d-glucoside as acceptor (Km ∼ 2 mg/mL for laminaran) and laminaran as donor and as acceptor (Km ∼ 5 mg/mL) yielding p-nitrophenyl β d-glucooligosaccharides (n = 2-6) and high-molecular branching (1→3),(1→6)-β-d-glucans, respectively. Efficiency of hydrolysis and transglycosylation processes depended on the substrate structure and decreased appreciably with the increase of the percentage of β-(1→6)-glycosidic bonds, and laminaran with 10% of β-(1→6)-glycosidic bonds was the optimal substrate for both reactions. The CD spectrum of L0 was characteristic for a protein with prevailing β secondary-structural elements. Binding L0 with d-glucose as the best acceptor for transglycosylation was investigated by the methods of intrinsic tryptophan fluorescence and CD. Glucose in concentration sufficient to saturate the enzyme binding sites resulted in a red shift in the maximum of fluorescence emission of 1-1.5 nm and quenching the Trp fluorescence up to 50%. An apparent association constant of L0 with glucose (Ka = 7.4 × 105 ± 1.1 × 105 M−1) and stoichiometry (n = 13.3 ± 0.7) was calculated. The cDNA encoding L0 was sequenced, and the enzyme was classified in glycoside hydrolases family 16 on the basis of the amino acid sequence similarity.  相似文献   

16.
Detailed kinetic studies were performed in order to determine the role of the single cysteine residue in the desulfonation reaction catalyzed by SsuD. Mutation of the conserved cysteine at position 54 in SsuD to either serine or alanine had little effect on FMNH2 binding. The kcat/Km value for the C54S SsuD variant increased 3-fold, whereas the kcat/Km value for C54A SsuD decreased 6-fold relative to wild-type SsuD. An initial fast phase was observed in kinetic traces obtained for the oxidation of flavin at 370 nm when FMNH2 was mixed against C54S SsuD (kobs, 111 s− 1) in oxygenated buffer that was 10-fold faster than wild-type SsuD (kobs, 12.9 s− 1). However, there was no initial fast phase observed in similar kinetic traces obtained for C54A SsuD. This initial fast phase was previously assigned to the formation of the C4a-(hydro)peroxyflavin in studies with wild-type SsuD. There was no evidence for the formation of the C4a-(hydro)peroxyflavin with either SsuD variant when octanesulfonate was included in rapid reaction kinetic studies, even at low octanesulfonate concentrations. The absence of any C4a-(hydro)peroxyflavin accumulation correlates with the increased catalytic activity of C54S SsuD. These results suggest that the conservative serine substitution is able to effectively take the place of cysteine in catalysis. Conversely, decreased accumulation of the C4a-(hydro)peroxyflavin intermediate with the C54A SsuD variant may be due to decreased activity. The data described suggest that Cys54 in SsuD may be either directly or indirectly involved in stabilizing the C4a-(hydro)peroxyflavin intermediate formed during catalysis through hydrogen bonding interactions.  相似文献   

17.
Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~ 103 times faster with peroxynitrite than with hydrogen peroxide, but the molecular reasons for that remained unknown. Herein, we investigated the oxidizing substrate specificity and the oxidative inactivation of the enzyme. In most cases, both peroxidatic thiol oxidation and sulfenic acid overoxidation followed a trend in which those peroxides with the lower leaving-group pKa reacted faster than others. These data are in agreement with the accepted mechanisms of thiol oxidation and support that overoxidation occurs through sulfenate anion reaction with the protonated peroxide. However, MtAhpE oxidation and overoxidation by fatty acid-derived hydroperoxides (~ 108 and 105 M− 1 s− 1, respectively, at pH 7.4 and 25 °C) were much faster than expected according to the Brønsted relationship with leaving-group pKa. A stoichiometric reduction of the arachidonic acid hydroperoxide 15-HpETE to its corresponding alcohol was confirmed. Interactions of fatty acid hydroperoxides with a hydrophobic groove present on the reduced MtAhpE surface could be the basis of their surprisingly fast reactivity.  相似文献   

18.
Understanding the mechanisms that dictate protein stability is of large relevance, for instance, to enable design of temperature-tolerant enzymes with high enzymatic activity over a broad temperature interval. In an effort to identify such mechanisms, we have performed a detailed comparative study of the folding thermodynamics and kinetics of the ribosomal protein S16 isolated from a mesophilic (S16meso) and hyperthermophilic (S16thermo) bacterium by using a variety of biophysical methods. As basis for the study, the 2.0 Å X-ray structure of S16thermo was solved using single wavelength anomalous dispersion phasing. Thermal unfolding experiments yielded midpoints of 59 and 111 °C with associated changes in heat capacity upon unfolding (ΔCp0) of 6.4 and 3.3 kJ mol− 1 K− 1, respectively. A strong linear correlation between ΔCp0 and melting temperature (Tm) was observed for the wild-type proteins and mutated variants, suggesting that these variables are intimately connected. Stopped-flow fluorescence spectroscopy shows that S16meso folds through an apparent two-state model, whereas S16thermo folds through a more complex mechanism with a marked curvature in the refolding limb indicating the presence of a folding intermediate. Time-resolved energy transfer between Trp and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide of proteins mutated at selected positions shows that the denatured state ensemble of S16thermo is more compact relative to S16meso. Taken together, our results suggest the presence of residual structure in the denatured state ensemble of S16thermo that appears to account for the large difference in quantified ΔCp0 values and, in turn, parts of the observed extreme thermal stability of S16thermo. These observations may be of general importance in the design of robust enzymes that are highly active over a wide temperature span.  相似文献   

19.
Cystathionine γ-lyase (CGL) catalyzes the hydrolysis of l-cystathionine (l-Cth), producing l-cysteine (l-Cys), α-ketobutyrate and ammonia, in the second step of the reverse transsulfuration pathway, which converts l-homocysteine (l-Hcys) to l-Cys. Site-directed variants substituting residues E48 and E333 with alanine, aspartate and glutamine were characterized to probe the roles of these acidic residues, conserved in fungal and mammalian CGL sequences, in the active-site of CGL from Saccharomyces cerevisiae (yCGL). The pH optimum of variants containing the alanine or glutamine substitutions of E333 is increased by 0.4–1.2 pH units, likely due to repositioning of the cofactor and modification of the pKa of the pyridinium nitrogen. The pH profile of yCGL-E48A/E333A resembles that of Escherichia coli cystathionine β-lyase. The effect of substituting E48, E333 or both residues is the 1.3–3, 26–58 and 124–568-fold reduction, respectively, of the catalytic efficiency of l-Cth hydrolysis. The Kml-Cth of E333 substitution variants is increased ~ 17-fold, while Kml-OAS is within 2.5-fold of the wild-type enzyme, indicating that residue E333 interacts with the distal amine moiety of l-Cth, which is not present in the alternative substrate O-acetyl-l-serine. The catalytic efficiency of yCGL for α,γ-elimination of O-succinyl-l-homoserine (kcat/Kml-OSHS = 7 ± 2), which possesses a distal carboxylate, but lacks an amino group, is 300-fold lower than that of the physiological l-Cth substrate (kcat/Kml-Cth = 2100 ± 100) and 260-fold higher than that of l-Hcys (kcat/Kml-Hcys = 0.027 ± 0.005), which lacks both distal polar moieties. The results of this study suggest that the glutamate residue at position 333 is a determinant of specificity.  相似文献   

20.

Background

In Saccharomyces cerevisiae methylation at cysteine residue displayed enhanced activity of trehalose-6-phosphate synthase (TPS).

Methods

The cysteine methyltransferase (CMT) responsible for methylating TPS was purified and characterized. The amino acid sequence of the enzyme protein was determined by a combination of N-terminal sequencing and MALDI-TOF/TOF analysis. The nucleotide sequence of the CMT gene was determined, isolated from S. cerevisiae and expressed in E. coli. Targeted disruption of the CMT gene by PCR based homologous recombination in S. cerevisiae was followed by metabolite characterization in the mutant.

Results

The purified enzyme was observed to enhance the activity of TPS by a factor of 1.76. The 14 kDa enzyme was found to be cysteine specific. The optimum temperature and pH of enzyme activity was calculated as 30 °C and 7.0 respectively. The Km Vmax and Kcat against S-adenosyl-l-methionine (AdoMet) were 4.95 μM, 3.2 U/mg and 6.4 s− 1 respectively. Competitive inhibitor S-Adenosyl-l-homocysteine achieved a Ki as 10.9 μM against AdoMet. The protein sequence contained three putative AdoMet binding motifs. The purified recombinant CMT activity exhibited similar physicochemical characteristics with the native counterpart. The mutant, Mataα, cmt:: kanr exhibited almost 50% reduction in intracellular trehalose concentration.

Conclusion

A novel cysteine methyltransferase is purified, which is responsible for enhanced levels of trehalose in S. cerevisiae.

General significance

This is the first report about a cysteine methyltransferase which performs S methylation at cysteine residue regulating TPS activity by 50%, which resulted in an increase of the intercellular stress sugar, trehalose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号