首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An apparently full-length complementary DNA copy of in vitro polyadenylated MS2 RNA was synthesized with avian myeloblastosis virus RNA-dependent DNA polymerase. After the MS2 RNA template was removed from the complementary DNA strand with T1 and pancreatic RNase digestion, the complementary DNA became a good template for the synthesis of double-stranded MS2 DNA with Escherichia coli DNA polymerase I. We then constructed molecular chimeras by inserting the double-stranded MS2 DNA into the PstI restriction endonuclease cleavage site of the E. coli plasmid pBR322 by means of the poly(dA)· poly(dT) tailing procedure. An E. coli transformant carrying a plasmid with a nearly full-length MS2 DNA insertion, called pMS2-7, was chosen for further study. Correlation between the restriction cleavage site map of pMS2-7 DNA and the cleavage map predicted from the primary structure of MS2 RNA, and nucleotide sequence analysis of the 5′ and 3′ end regions of the MS2 DNA insertion, showed that the entire MS2 RNA had been faithfully copied, and that, except for 14 nucleotides corresponding to the 5′-terminal sequence of MS2 RNA, the fulllength DNA copy of the viral genetic information had been inserted into the plasmid. Restriction endonuclease analysis of the chimera plasmid DNA also revealed the presence of an extra DNA insertion which was identified as the translocatable element IS13 (see following paper).  相似文献   

2.
3.
Current colony PCR methods are not suitable for screening genes encoded in genomic DNA and are limited to E. coli host strains. Here, we describe an ultra-high efficient colony PCR method for high throughput screening of bacterial genes embedded in the genomic DNA of any bacterial species. This new technique expands colony PCR method to several hosts as well as offers a rapid, less expensive and reliable bacterial genomic DNA extraction.  相似文献   

4.
Abstract

Several 5-chlorouracil and 5-chlorocytosine β-L-dideoxynucleosides were stereospecifically synthesized and their activities against human immunodeficiency virus (HIV) and hepatitis B virus (HBV) were examinated in cell culture.  相似文献   

5.
Summary A general method has been developed for the deletion of restriction endonuclease sites in bacterial plasmid DNA. The procedure involves partial digestion of the covalently closed circular plasmid DNA with an appropriate restriction endonuclease under conditions which allow accumulation of unit-length linear DNA molecules, controlled digestion of the exposed 5 ends with the 5-exonuclease, and in vivo recircularization of the resulting linear DNA in a bacterial host cell. The method has been used for the deletion of one of the two EcoRI sites in the plasmid pML2 (colE1-Km). Two of the resulting plasmids, pCR1 and pCR11, have a single EcoRI cleavage site, but retain genetic determinants specifying resistance to colicin E1 and kanamycin, and thus may be useful as vectors for the cloning and amplification of DNA in bacteria.  相似文献   

6.
Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces circumvents problems such as host-controlled restriction and instability of foreign DNA during the transformation of Streptomyces protoplasts. The anthracycline antibiotic-producing strains Streptomyces peucetius and Streptomyces sp. strain C5 were transformed using E. coli ET12567(pUZ8002) as a conjugal donor. When this donor species, carrying pSET152, was mated with Streptomyces strains, the resident plasmid was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. Analysis of the exconjugants showed stable integration of the plasmid at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the chromosomal integration site was determined and shown to be conserved. However, the core sequence, where the crossover presumably occurred in C5 and S. peucetius, is TTC. These results also showed that the C31 integrative recombination is active and the phage attP site is functional in S. peucetius as well as in C5. The efficiency and specificity of C31-mediated site-specific integration of the plasmid in the presence of a 3.7-kb homologous DNA sequence indicates that integrative recombination is preferred under these conditions. The integration of plasmid DNA did not affect antibiotic biosynthesis or biosynthesis of essential amino acids. Integration of a single copy of a mutant chiC into the wild-type S. peucetius chromosome led to the production of 30-fold more chitinase.  相似文献   

7.
A point mutation (E115K) resulting in slower growth of Escherichia coli DH5α and XL1-Blue in minimal media was identified in the purB gene, coding for adenylosuccinate lyase (ASL), through complementation with an E. coli K-12 genomic library and serial subcultures. Chromosomal modification reversing the mutation to the wild type restored growth phenotypes in minimal media.The Escherichia coli DH5α strain possesses many beneficial genotypes (recA, deoR, gyrA, and endA1) and has been widely used for many purposes, such as gene cloning and protein production (5). However, E. coli DH5α also exhibits inferior growth phenotypes, especially in minimal media, compared to other E. coli strains. As such, the utilization of this bacterium has been limited to the laboratory despite its numerous advantages. We can assume that these inferior growth phenotypes have resulted from unknown accumulated mutations during the strain development process (5). Some of those mutations, which might impact growth in minimal media, have been characterized, including the phenotypes for thiamine requirement and relaxed amino acid synthesis (5). Still, there may be other uncharacterized mutations whose interactions hamper the growth of E. coli DH5α in minimal media.Based on successful identifications (6, 7) of gene targets for metabolic engineering (3), we performed serial subcultures of E. coli DH5α transformants with an E. coli K-12 genomic library based on a multicopy plasmid (9) to isolate genes that improve growth phenotypes in minimal media. The M9 minimal medium and R medium (11) were chosen for enrichment experiments because of their popular use in metabolic engineering (1, 2, 7) and in high-cell-density fermentation (8, 10, 11). After 11 serial transfers of the transformants in the M9 medium, and 27 transfers in the R medium, cultured cells were diluted and plated onto LB agar for single-colony isolation. Although more than 10 colonies were picked, only three distinctive plasmids, containing different inserts, were isolated from the transformants enriched in M9 medium. In the case of R medium enrichment, all isolated plasmids were identical. Sequencing of the isolated plasmids revealed the exact genome coordinates of each insert. A diagram of the inserts in the context of the E. coli genome sequence is shown in Fig. Fig.1.1. Interestingly, all of the isolated plasmids contained similar regions of genomic DNA. mnmA (tRNA 5-methylaminomethyl-2-thiouridylate-methyltransferase), purB (adenylosuccinate lyase), and hflD (lysogenization regulator) were the annotated genes in the overlapping region among distinctive isolated fragments. However, since the N-terminal portions of mnmA and hflD were truncated in some of the inserts, we selected only the M3 and R1 plasmids for further experimentation. These two plasmids were retransformed into E. coli DH5α for confirmation of their beneficial effects on growth of E. coli in minimal media. The newly transformed strains showed growth phenotypes almost identical to those of the previously isolated transformants. When cultured in flasks, the specific growth rate of E. coli DH5α with the R1 plasmid was 1.5-fold higher (0.53 versus 0.36 h−1) than the rate of cells transformed with a control plasmid (pZE). The R1 transformant reached the stationary phase much earlier, arriving at an optical density at 600 nm (OD600) of 10 within 16 h, whereas the control transformant reached this cell density after 24 h. However, the final cell densities were almost equivalent. Acetate accumulation, as well as glucose consumption, by the R1 transformant was much higher than that of the control transformant (2.2 versus 0.3 g acetate/liter). The increased accumulation of acetate could be the result of increased cell density. These findings confirm that the enhanced growth phenotypes of the isolated transformants were conferred not by accumulated spontaneous mutations in the genome during enrichment but by the introduced plasmids.Open in a separate windowFIG. 1.Diagram of open reading frames in the identified genomic DNA fragments. M1, M2, and M3 were isolated from the serial subculture using M9 medium. R1 was isolated from the serial subculture using R medium.The open reading frame (ORF) of purB was amplified and cloned into a multicopy plasmid under the control of a strong promoter (rrnB). Transformation of the resulting plasmid (pZE-purB) into E. coli DH5α resulted in a growth phenotype almost identical to that of the R1 transformant. This result suggested that overexpression of purB is a specific genetic perturbation improving growth phenotypes of E. coli DH5α in minimal media. We also performed 1-liter batch fermentation experiments with three DH5α transformants: one containing the control plasmid (pZE), one with the isolated plasmid (R1), and a third with the purB overexpression plasmid (pZE-purB). Growth phenotypes of these strains were very similar to results obtained from shaker flask experiments (Fig. (Fig.2).2). Next, we tested whether the overexpression of purB is beneficial to the growth of other E. coli strains by introducing the R1 and pZE-purB plasmids into various other strains (K-12, BL21, and XL1-Blue) that are commonly used in biotechnological research. Among the four strains tested in our various experiments, the positive effects of purB overexpression on growth phenotypes were observed only in DH5α and XL1-Blue, both of which have been favored in molecular cloning. These results suggest that an uncharacterized mutation might have been introduced into both strains during strain development. This unknown mutation might cause growth inhibition, which can be suppressed by the overexpression of purB. Therefore, we concluded that expression of an exogenous, K-12-derived copy of the purB gene under a constitutive promoter can enhance growth phenotypes of E. coli DH5α and XL1-Blue strains in minimal media.Open in a separate windowFIG. 2.Comparison of levels of cell growth (♦) (OD600), glucose consumption (▪) (g/liter), and acetate production (▴) (g/liter) by E. coli DH5α transformants with a control plasmid (A), the isolated R1 plasmid (B), and the pZE-purB plasmid (C) in R medium with glucose in a bioreactor.However, it is plausible that a mutation is located in the purB locus of DH5α and XL1-Blue that decreases the activity of the encoded enzyme. In order to identify a putative mutation in purB, we sequenced the chromosomal purB gene of DH5α and XL1-Blue. A point mutation resulting in the transition of nucleotide 343 of purB from guanine (G) to adenine (A) was identified in the genomes of both strains. This mutation causes a change of the 115th residue of adenylosuccinate lyase from glutamate to lysine (E115K). This finding explains why the expression of exogenous, K-12-derived purB in DH5α and XL1-Blue strains enhances growth phenotypes in minimal media. The E115K mutation of purB was named purB20 for simple notation.Chromosomal modification of the mutant allele in E. coli DH5α or XL1-Blue might be desirable for practical applications. To this end, the purB20 mutant allele was replaced by purB amplified from E. coli K-12 through recombination based on phage lambda Red recombinase (4). The resulting strain (SC1) showed growth phenotypes similar to those of E. coli DH5α strains harboring the pZE-purB or R1 plasmid. The specific growth rate of SC1 in M9 medium was 40% higher than that of DH5α (0.50 versus 0.36 h−1). These results show that what we had originally interpreted as overexpression of the purB gene was actually complementation of the mutant purB20 allele with wild-type purB. We also tested whether the modification from purB20 to wild-type purB elicits a change in the transformation efficiency. Chemically induced competent SC1 cells exhibited approximately 2.5-fold lower transformation efficiency than E. coli DH5α cells did when induced under identical conditions (1.8 ± 0.1 × 106 versus 4.6 ± 0.3 × 106 CFU/μg pUC19 DNA). Still, the transformation efficiency of the SC1 strain was of the same order of magnitude as that of E. coli DH5α, suggesting that the SC1 strain would be useful for many biotechnological applications, such as the mass production of DNA vectors and recombinant proteins.  相似文献   

8.
9.
For reasons of efficiency Escherichia coli is used today as the microbial factory for production of plasmid DNA vaccines. To avoid hazardous antibiotic resistance genes and endotoxins from plasmid systems used nowadays, we have developed a system based on the food-grade Lactococcus lactis and a plasmid without antibiotic resistance genes. We compared the L. lactis system to a traditional one in E. coli using identical vaccine constructs encoding the gp120 of HIV-1. Transfection studies showed comparable gp120 expression levels using both vector systems. Intramuscular immunization of mice with L. lactis vectors developed comparable gp120 antibody titers as mice receiving E. coli vectors. In contrast, the induction of the cytolytic response was lower using the L. lactis vector. Inclusion of CpG motifs in the plasmids increased T-cell activation more when the E. coli rather than the L. lactis vector was used. This could be due to the different DNA content of the vector backbones. Interestingly, stimulation of splenocytes showed higher adjuvant effect of the L. lactis plasmid. The study suggests the developed L. lactis plasmid system as new alternative DNA vaccine system with improved safety features. The different immune inducing properties using similar gene expression units, but different vector backbones and production hosts give information of the adjuvant role of the silent plasmid backbone. The results also show that correlation between the in vitro adjuvanticity of plasmid DNA and its capacity to induce cellular and humoral immune responses in mice is not straight forward.  相似文献   

10.
Summary An investigation of in vitro mutagenesis of plasmid DNA with hydroxylamine is described. The treated plasmid DNA was used to transform Escherichia coli K12. Mutants of the plasmid NTP3, which codes for resistance to ampicillin and sulphonamides, were isolated and characterised. They were classified according to the reduction in level of their -lactamase activity. Hydroxylamine-induced mutants of NTP14 were also isolated. This plasmid codes for ampicillin resistance, synthesis of colicin E1, and the EcoRI restriction and modification enzymes. One class of mutants is lethal to the host strain at temperatures above 33° C, but carrier strains grow well at 28° C. There is evidence that these mutants code for a temperature-sensitive EcoRI modification activity: the lethal effect probably results from the cleavage of the host-cell DNA by the restriction enzyme at non-permissive temperatures. The possible genetic uses of the mutant plasmids for the production of hybrid plasmids in the bacterial cell are discussed.  相似文献   

11.
Production of pharmaceutical-grade plasmid DNA is becoming important as the demand for clinical batches is steadily growing. pCOR plasmids have been specifically designed and used for gene delivery into humans, and have been produced by high cell-density fermentation with a yield of 100 mg/l. This yield could probably be increased as long as the release specifications of bulk plasmid remain the same, particularly in terms of plasmid sequence. We report here the use of genetic approaches in Escherichia coli to increase the copy number of pCOR. The bacterial gene encoding the initiator-protein, which plays a pivotal role in pCOR replication, was mutagenized. A fluorescence-based screening methodology in E. coli was used to identify novel copy-up mutations. A particular combination of copy-up mutations translated into a 3–5-fold increase in monomer pCOR plasmid DNA per biomass unit.  相似文献   

12.
An artificial gene encoding oxyntomodulin was obtained using chemical and enzymatic methods and cloned into Escherichia coli. A recombinant plasmid was constructed containing a hybrid oxyntomodulin gene and Ssp dnaB intein from Synechocystis sp. The expression of the resulting hybrid gene in E. coli, its properties, and the conditions of its autocatalytic cleavage to oxyntomodulin were studied.  相似文献   

13.
Summary E. coli 15T- carries two distinct sets of DNA restriction and modification activities. The genetic information for system A is contained in the bacterial chromosome and linked to the thr region. This fact suggests host specificity A to be related to those of strains K and B. The genes controlling system 15 are on a plasmid which is related to phage Pl: it competes with Pl for stable inheritance in the carried state and it genetically recombines with Pl. This recombination may produce plasmid genomes with newly assorted characters (see Table 3). One of them is an active, Pl-like prophage with the 15-specific instead of the parental Pl-specific restriction and modification characters. Superinfection of 15T- with Pl may also result in curing of the bacteria from the restriction plasmid.Bot A- and 15-specific restrictions and modifications act on bacterial DNA, on the DNA of various sex factors and on the DNA of certain bacteriophages, e.g. of phage . Phage 82 DNA is sensitive only to 15-specific restriction, but not to A-specific restriction.Independently of the A- and 15-specific restrictions, the growth of phage in E. coli 15T- encounters another limitation of yet unknown nature. No such limitation is observed either with phage 82 or with mutants of occurring at a frequency of about 10-5.  相似文献   

14.
The mobilization proteins of the broad-host-range plasmid R1162 can initiate conjugative transfer of a plasmid from a 19-bp locus that is partially degenerate in sequence. Such loci are likely to appear by chance in the bacterial chromosome and could act as cryptic sites for transfer of chromosomal DNA when R1162 is present. The R1162-dependent transfer of chromosomal DNA, initiated from one such potential site in Pectobacterium atrosepticum, is shown here. A second active site was identified in Escherichia coli, where it is also shown that large amounts of DNA are transferred. This transfer probably reflects the combined activity of the multiple cryptic origins in the chromosome. Transfer of chromosomal DNA due to the presence of a plasmid in the cytoplasm describes a previously unrecognized potential for the exchange of bacterial DNA.The discovery over 50 years ago of bacterial mating by Lederberg and Cavalli-Sforza (summarized by Cavalli-Sforza [10]) was a major step in the development of modern microbial genetics. It was later realized that chromosomal DNA transfer was due to the integration of a plasmid, the F factor. This plasmid is able to effect its own transfer and, in the integrated state, chromosomal DNA as well. A unique site on the plasmid, the origin of transfer (oriT), is essential for this process. A complex of plasmid- and host-encoded proteins assemble at oriT (15); the F-encoded relaxase then cleaves one of the DNA strands, forming a covalent, protein-DNA intermediate (27) that is delivered to the type IV secretion apparatus, also encoded by F (24). The possibility of low-level transfer initiating from chromosomal sites was raised early in the history of conjugation (12). However, it is now clear that the exacting architecture of the oriT DNA-protein complex, both for the F factor and related oriTs, results in a very high degree of sequence and structural specificity, and no secondary origins in the chromosome have been identified.The broad-host-range plasmid R1162 (RSF1010), like the F factor, is also transferred from cell to cell. Although the mechanism of transfer is similar for the two plasmids, the oriTs are structurally very different. In prior studies we have determined that the R1162 oriT is small, structurally simple, and able to accommodate base changes at different positions without a complete loss of function (5, 21). As a result of this relaxed specificity, the R1162 mobilization (Mob) proteins can activate the related but different oriT of another plasmid, pSC101 (28).The R1162 oriT is shown in Fig. Fig.1.1. The R1162 relaxase MobA interacts with the core region, highly conserved in the R1162 Mob family (5), and the adjacent, inner arm of the inverted repeat (23). The protein forms at nic a tyrosyl phosphodiester linkage with the 5′ end of the DNA strand (30), which is then unwound from its complement as the protein-DNA complex is passed into the recipient cell. Circular plasmid DNA is reformed by a reverse of the initial protein-DNA transesterification, with the relaxase now binding to the 3′ end of the transferred DNA. This binding requires the complete inverted repeat, which probably forms a hairpin loop to recreate the double-stranded character of the relaxase binding site on duplex DNA.Open in a separate windowFIG. 1.Base sequence of R1162 oriT on the nicked strand. The relaxase cleaves at nic; subsequent transfer is 5′ to 3′ so that most of oriT is transferred last. Below is the consensus sequence of DNA active for initiation of transfer.An important feature of the steps in DNA processing at the R1162 oriT is that an inverted repeat is not required for the initiation of transfer or passage of DNA into a new cell. As a result of this and the permissiveness of the relaxase to base changes within oriT, different sites in the chromosome that are not part of a plasmid oriT might nevertheless be capable of initiating transfer when cloned into a plasmid. We previously identified one such site in the chromosome of Erwinia carotovora subsp. atroseptica (now Pectobacterium atrosepticum) (21). In addition, by testing libraries of oriTs with one or more mutations for relaxase-induced nicking, we found that a large population of DNAs with different sequences was potentially active (21). The consensus sequence for activity, derived from these studies, is shown in Fig. Fig.11.I show here that ectopic sites on the bacterial chromosome, active for the initiation of transfer of plasmid DNA, can also serve for the transfer of chromosomal DNA when the Mob proteins are provided in trans. Thus, the presence of R1162 in the cell can result in a cryptic sexuality in bacteria, resulting in the transfer of chromosomal genes. Although such events are likely to be infrequent, the broad-host-range of R1162 and its close relatives, with their ability to reside stably in the cytoplasms of many different bacteria, could be another source of gene exchange for a variety of different species.  相似文献   

15.

Background

ExCyto PCR cells provide a novel and cost effective means to amplify DNA transformed into competent bacterial cells. ExCyto PCR uses host E. coli with a chromosomally integrated gene encoding a thermostable DNA polymerase to accomplish robust, hot-start PCR amplification of cloned sequences without addition of exogenous enzyme.

Results

Because the thermostable DNA polymerase is stably integrated into the bacterial chromosome, ExCyto cells can be transformed with a single plasmid or complex library, and then the expressed thermostable DNA polymerase can be used for PCR amplification. We demonstrate that ExCyto cells can be used to amplify DNA from different templates, plasmids with different copy numbers, and master mixes left on ice for up to two hours. Further, PCR amplification with ExCyto cells is comparable to amplification using commercial DNA polymerases. The ability to transform a bacterial strain and use the endogenously expressed protein for PCR has not previously been demonstrated.

Conclusions

ExCyto PCR reduces pipetting and greatly increases throughput for screening EST, genomic, BAC, cDNA, or SNP libraries. This technique is also more economical than traditional PCR and thus broadly useful to scientists who utilize analysis of cloned DNAs in their research.  相似文献   

16.
17.
Spontaneous plasmid transformation of Escherichia coli occurs on nutrient-containing agar plates. E. coli has also been reported to use double-stranded DNA (dsDNA) as a carbon source. The mechanism(s) of entry of exogenous dsDNA that allows plasmid establishment or the use of DNA as a nutrient remain(s) unknown. To further characterize plasmid transformation, we first documented the stimulation of transformation by agar and agarose. We provide evidence that stimulation is not due to agar contributing a supplement of Ca2+, Fe2+, Mg2+, Mn2+, or Zn2+. Second, we undertook to inactivate the E. coli orthologues of Haemophilus influenzae components of the transformation machine that allows the uptake of single-stranded DNA (ssDNA) from exogenous dsDNA. The putative outer membrane channel protein (HofQ), transformation pseudopilus component (PpdD), and transmembrane pore (YcaI) are not required for plasmid transformation. We conclude that plasmid DNA does not enter E. coli cells as ssDNA. The finding that purified plasmid monomers transform E. coli with single-hit kinetics supports this conclusion; it establishes that a unique monomer molecule is sufficient to give rise to a transformant, which is not consistent with the reconstitution of an intact replicon through annealing of partially overlapping complementary ssDNA, taken up from two independent monomers. We therefore propose that plasmid transformation involves internalization of intact dsDNA molecules. Our data together, with previous reports that HofQ is required for the use of dsDNA as a carbon source, suggest the existence of two routes for DNA entry, at least across the outer membrane of E. coli.The spontaneous transformation of Escherichia coli with plasmid DNA on nutrient-containing agar plates was described in at least three independent articles (14, 23, 24). However, no attempt to characterize the mechanism of plasmid DNA uptake has been reported. Genomic analysis revealed the presence in E. coli of a set of genes homologous to those required for DNA uptake in naturally transformable species, including the gram-positive Bacillus subtilis and Streptococcus pneumoniae and the gram-negative Haemophilus influenzae and Neisseria gonorrhoeae (9). The machine they potentially encode would allow the uptake of single-stranded DNA (ssDNA) from an exogenous double-stranded DNA (dsDNA) substrate in E. coli (Fig. (Fig.1).1). HofQ (called ComE in reference 7) is the ortholog of the PilQ secretin of N. gonorrhoeae, which constitutes a transmembrane channel required for exogenous dsDNA to traverse the outer membrane (OM) and reach the so-called transformation pseudopilus (8). According to the Bacillus subtilis paradigm (8), assembly of the pseudopilus requires a prepilin peptidase (PppA; called PilD in reference 7), a traffic NTPase (HofB; called PilB in reference 7), and a polytopic membrane protein (HofC; called PilC in reference 7). The pseudopilus, which would include PpdD (called PilA in reference 7), provides access for dsDNA to its receptor, YbaV (called ComE1 in reference 7), through the peptidoglycan. Degradation of one strand by an unidentified nuclease (N) would allow uptake of ssDNA through YcaI (called Rec2 in reference 7), a channel in the inner membrane. Finally, DprA (also named Smf) would be required to protect internalized ssDNA from endogenous nucleases, as shown in S. pneumoniae (4), and to assist the processing of ssDNA into transformants (16).Open in a separate windowFIG. 1.Diagrammatic representation of the putative E. coli DNA uptake machine. The E. coli orthologues of proteins required involved in the uptake of transforming DNA in naturally transformable species, including B. subtilis, S. pneumoniae, H. influenzae, and N. gonorrhoeae, were identified by genomic analysis (9). GspD is a PilQ paralogue (25% identity over 278 residues), which was considered in the present study as a possible alternative route for dsDNA across the OM. A prepilin peptidase (PppA; called PilD in reference 7) required for maturation and export of proteins constituting the transformation pseudopilus (see Table S1 in the supplemental material) is not drawn on this diagram. (Additional information regarding the relationship between E. coli and H. influenzae transformation genes, and a table listing the various alternative names used in the literature are available in the supplemental material.). Red crosses indicate components of the putative DNA uptake machine inactivated during this work. IM, inner membrane.In H. influenzae, transformation genes are preceded by unusual CRP (for cyclic AMP receptor protein) binding sites, now called CRP-S (7), that absolutely require a second protein, Sxy (also called TfoX), in addition to CRP for induction (19). Interestingly, bioinformatics analysis revealed the conservation of CRP-S sites in front of the corresponding E. coli genes (7), including all of the genes encoding the proteins shown in Fig. Fig.11 (except GspD). Furthermore, some of these genes were experimentally demonstrated to require CRP, cAMP (CRP''s allosteric effector), and Sxy for induction in E. coli, providing support to the view that CRP-S sites control a bona fide transformation regulon in this bacterium (7). However, the involvement of E. coli transformation genes in DNA uptake has not been documented, except for hofQ, which was reported to be required for the use of dsDNA as a nutrient (11, 18). Although the functionality of the E. coli transformation genes has not been confirmed experimentally, it is of note that the bioinformatics identification of a complete set of transformation genes in two other species not previously known to be naturally transformable, Streptococcus thermophilus and Bacillus cereus, opened the way to the demonstration of genetic transformation in these species (6, 15a).To characterize further spontaneous plasmid transformation in E. coli, we first identified parameters affecting plasmid transformation frequencies on plates. We then undertook to inactivate genes encoding the putative transformation-related DNA uptake machinery of E. coli (Fig. (Fig.1)1) and to compare the rate of spontaneous plasmid transformation in the corresponding mutants and in their wild-type parent. In addition, to get an insight into the process of plasmid DNA entry, we characterized the kinetics of plasmid monomer transformation because it was shown in S. pneumoniae that regeneration of an intact plasmid replicon requires the independent uptake (via the transformation machine) of complementary ssDNA from two monomers (21). Finally, we discuss the possible significance of our data regarding the entry of exogenous dsDNA in E. coli in the light of previous findings on the use of dsDNA as a carbon source in this species (11, 18).  相似文献   

18.

Background

Bacterial conjugation is a mechanism for horizontal DNA transfer between bacteria which requires cell to cell contact, usually mediated by self-transmissible plasmids. A protein known as relaxase is responsible for the processing of DNA during bacterial conjugation. TrwC, the relaxase of conjugative plasmid R388, is also able to catalyze site-specific integration of the transferred DNA into a copy of its target, the origin of transfer (oriT), present in a recipient plasmid. This reaction confers TrwC a high biotechnological potential as a tool for genomic engineering.

Methodology/Principal Findings

We have characterized this reaction by conjugal mobilization of a suicide plasmid to a recipient cell with an oriT-containing plasmid, selecting for the cointegrates. Proteins TrwA and IHF enhanced integration frequency. TrwC could also catalyze integration when it is expressed from the recipient cell. Both Y18 and Y26 catalytic tyrosil residues were essential to perform the reaction, while TrwC DNA helicase activity was dispensable. The target DNA could be reduced to 17 bp encompassing TrwC nicking and binding sites. Two human genomic sequences resembling the 17 bp segment were accepted as targets for TrwC-mediated site-specific integration. TrwC could also integrate the incoming DNA molecule into an oriT copy present in the recipient chromosome.

Conclusions/Significance

The results support a model for TrwC-mediated site-specific integration. This reaction may allow R388 to integrate into the genome of non-permissive hosts upon conjugative transfer. Also, the ability to act on target sequences present in the human genome underscores the biotechnological potential of conjugative relaxase TrwC as a site-specific integrase for genomic modification of human cells.  相似文献   

19.
EcoP15 is a restriction-modification enzyme coded by the P15 plasmid of Escherichia coli. We have determined the sites recognized by this enzyme on pBR322 and simian virus 40 DNA. The enzyme recognizes the sequence:
In restriction, the enzyme cleaves the DNA 25 to 26 base-pairs 3′ to this sequence to leave single-stranded 5′ protrusions two bases long.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号