首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radical phenyl ring rotation, or both. Reaction of hPGHS-1 with peroxide produced a wide singlet, whereas its Y504F mutant produced only a wide doublet signal, assigned to the Tyr385 radical. The cyclooxygenase specific activity and KM value for arachidonate of hPGHS-1 were not affected by the Y504F mutation, but the peroxidase specific activity and the KM value for peroxide were increased. The Y385F and Y385F/Y504F mutants retained only a small fraction of the peroxidase activity; the former had a much-reduced yield of peroxide-induced radical and the latter essentially none. After binding of indomethacin, a cyclooxygenase inhibitor, hPGHS-1 produced a narrow singlet but the Y504F mutant did not form a tyrosyl radical. These results indicate that peroxide-induced radicals form on Tyr385 and Tyr504 of hPGHS-1, with radical primarily on Tyr504 in the wild type protein; indomethacin binding prevented radical formation on Tyr385 but allowed radical formation on Tyr504. Thus, hPGHS-1 and -2 have different distributions of peroxide-derived radical between Tyr385 and Tyr504. Y504F mutants in both hPGHS-1 and -2 significantly decreased the cyclooxygenase activation efficiency, indicating that formation of the Tyr504 radical is functionally important for both isoforms.  相似文献   

2.
Cyclooxygenase catalysis by prostaglandin H synthase-1 and -2 (PGHS-1 and -2) requires activation of the normally latent enzyme by peroxide-dependent generation of a free radical at Tyr-385 (PGHS-1 numbering) in the cyclooxygenase active site; the Tyr-385 radical has also been linked to self-inactivation processes that impose an ultimate limit on cyclooxygenase catalysis. Cyclooxygenase activation is more resistant to suppression by cytosolic glutathione peroxidase in PGHS-2 than in PGHS-1. This differential response to peroxide scavenging enzymes provides a basis for the differential catalytic regulation of the two PGHS isoforms observed in vivo. We sought to identify structural differences between the isoforms, which could account for the differential cyclooxygenase activation, and used site-directed mutagenesis of recombinant human PGHS-2 to focus on one heme-vicinity residue that diverges between the two isoforms, Thr-383, and an adjacent residue that is conserved between the isoforms, Asn-382. Substitutions of Thr-383 (histidine in most PGHS-1) with histidine or aspartate decreased cyclooxygenase activation efficiency by about 40%, with little effect on cyclooxygenase specific activity or self-inactivation. Substitutions of Asn-382 with alanine, aspartate, or leucine had little effect on the cyclooxygenase specific activity or activation efficiency but almost doubled the cyclooxygenase catalytic output before self-inactivation. Asn-382 and Thr-383 mutations did not appreciably alter the Km value for arachidonate, the cyclooxygenase product profile, or the Tyr-385 radical spectroscopic characteristics, confirming the structural integrity of the cyclooxygenase site. The side chain structures of Asn-382 and Thr-383 in PGHS-2 thus selectively influence two important aspects of cyclooxygenase catalytic regulation: activation by peroxide and self-inactivation.  相似文献   

3.
Prostaglandin H(2) synthesis by prostaglandin endoperoxide synthase (PGHS) requires the heme-dependent activation of the protein's cyclooxygenase activity. The PGHS heme participates in cyclooxygenase activation by accepting an electron from Tyr385 located in the cyclooxygenase active site. Two mechanisms have been proposed for the oxidation of Tyr385 by the heme iron: (1) ferric enzyme oxidizes a hydroperoxide activator and the incipient peroxyl radical oxidizes Tyr385, or (2) ferric enzyme reduces a hydroperoxide activator and the incipient ferryl-oxo heme oxidizes Tyr385. The participation of ferrous PGHS in cyclooxygenase activation was evaluated by determining the reduction potential of PGHS-2. Under all conditions tested, this potential (<-135 mV) was well below that required for reactions leading to cyclooxygenase activation. Substitution of the proximal heme ligand, His388, with tyrosine was used as a mechanistic probe of cyclooxygenase activation. His388Tyr PGHS-2, expressed in insect cells and purified to homogeneity, retained cyclooxygenase activity but its peroxidase activity was diminished more than 300-fold. Concordant with this poor peroxidase activity, an extensive lag in His388Tyr cyclooxygenase activity was observed. Addition of hydroperoxides resulted in a concentration-dependent decrease in lag time consistent with each peroxide's ability to act as a His388Tyr peroxidase substrate. However, hydroperoxide treatment had no effect on the maximal rate of arachidonate oxygenation. These data imply that the ferryl-oxo intermediates of peroxidase catalysis, but not the Fe(III)/Fe(II) couple of PGHS, are essential for cyclooxygenase activation. In addition, our findings are strongly supportive of a branched-chain mechanism of cyclooxygenase catalysis in which one activation event leads to many cyclooxygenase turnovers.  相似文献   

4.
Rogge CE  Liu W  Wu G  Wang LH  Kulmacz RJ  Tsai AL 《Biochemistry》2004,43(6):1560-1568
Hydroperoxides induce formation of a tyrosyl radical on Tyr385 in prostaglandin H synthase (PGHS). The Tyr385 radical initiates hydrogen abstraction from arachidonic acid, thereby mechanistically connecting the peroxidase and cyclooxygenase activities. In both PGHS isoforms the tyrosyl radical undergoes a time-dependent transition from a wide doublet to a wide singlet species; pretreatment with cyclooxygenase inhibitors results in a third type of signal, a narrow singlet [Tsai, A.-L.; Kulmacz, R. J. (2000) Prost. Lipid Med. 62, 231-254]. These transitions have been interpreted as resulting from Tyr385 ring rotation, but could also be due to radical migration from Tyr385 to another tyrosine residue. PATHWAYS analysis of PGHS crystal structures identified four tyrosine residues with favorable predicted electronic coupling: residues 148, 348, 404, and 504 (ovine PGHS-1 numbering). We expressed recombinant PGHS-2 proteins containing single Tyr --> Phe mutations at the target residues, a quadruple mutant with all four tyrosines mutated, and a quintuple mutant, which also contains a Y385F mutation. All mutants bind heme and display appreciable peroxidase activity, and with the exception of the quintuple mutant, all retain cyclooxygenase activity, indicating that neither of the active sites is significantly perturbed. Reaction of the Y148F, Y348F, and Y404F mutants with EtOOH generates a wide singlet EPR signal similar to that of native PGHS-2. However, reaction of the Y504F and the quadruple mutants with peroxide yields persistent wide doublets, and the quintuple mutant is EPR silent. Nimesulide pretreatment of Y504F and the quadruple mutant results in an abnormally small amount of wide doublet signal, with no narrow singlet being formed. Therefore, the formation of an alternative tyrosine radical on Tyr504 probably accounts for the transition from a wide doublet to a wide singlet in native PGHS-2 and for formation of a narrow singlet in complexes of PGHS-2 with cyclooxygenase inhibitors.  相似文献   

5.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2 involves reaction of a peroxide-induced Tyr385 radical with arachidonic acid (AA) to form an AA radical that reacts with O2. The potential for isomeric AA radicals and formation of an alternate tyrosyl radical at Tyr504 complicate analysis of radical intermediates. We compared the EPR spectra of PGHS-1 and -2 reacted with peroxide and AA or specifically deuterated AA in anaerobic, single-turnover experiments. With peroxide-treated PGHS-2, the carbon-centered radical observed after AA addition was consistently a pentadienyl radical; a variable wide-singlet (WS) contribution from mixture of Tyr385 and Tyr504 radicals was also present. Analogous reactions with PGHS-1 produced EPR signals consistent with varying proportions of pentadienyl and tyrosyl radicals, and two additional EPR signals. One, insensitive to oxygen exposure, is the narrow singlet tyrosyl radical with clear hyperfine features found previously in inhibitor-pretreated PGHS-1. The second type of EPR signal is a narrow singlet lacking detailed hyperfine features that disappeared upon oxygen exposure. This signal was previously ascribed to an allyl radical, but high field EPR analysis indicated that ~ 90% of the signal originates from a novel tyrosyl radical, with a small contribution from a carbon-centered species. The radical kinetics could be resolved by global analysis of EPR spectra of samples trapped at various times during anaerobic reaction of PGHS-1 with a mixture of peroxide and AA. The improved understanding of the dynamics of AA and tyrosyl radicals in PGHS-1 and -2 will be useful for elucidating details of the cyclooxygenase mechanism, particularly the H-transfer between tyrosyl radical and AA.  相似文献   

6.
Rogge CE  Ho B  Liu W  Kulmacz RJ  Tsai AL 《Biochemistry》2006,45(2):523-532
Both prostaglandin H synthase (PGHS) isoforms utilize a radical at Tyr385 to abstract a hydrogen atom from arachidonic acid, initializing prostaglandin synthesis. A Tyr348-Tyr385 hydrogen bond appears to be conserved in both isoforms; this hydrogen bonding has the potential to modulate the positioning and reactivity of the Tyr385 side chain. The EPR signal from the Tyr385 radical undergoes a time-dependent transition from a wide doublet to a wide singlet species in both isoforms. In PGHS-2, this transition results from radical migration from Tyr385 to Tyr504. Localization of the radical to Tyr385 in the recombinant human PGHS-2 Y504F mutant was exploited in examining the effects of blocking Tyr385 hydrogen bonding by introduction of a further Y348F mutation. Cyclooxygenase and peroxidase activities were found to be maintained in the Y348F/Y504F mutant, but the Tyr385 radical was formed more slowly and had greater rotational freedom, as evidenced by observation of a transition from an initial wide doublet species to a narrow singlet species, a transition not seen in the parent Y504F mutant. The effect of disrupting Tyr385 hydrogen bonding on the cyclooxygenase active site structure was probed by examination of cyclooxygenase inhibitor kinetics. Aspirin treatment eliminated all oxygenase activity in the Y348F/Y504F double mutant, with no indication of the lipoxygenase activity observed in aspirin-treated wild-type PGHS-2. Introduction of the Y348F mutation also strengthened the time-dependent inhibitory action of nimesulide. These results suggest that removal of Tyr348-Tyr385 hydrogen bonding in PGHS-2 allows greater conformational flexibility in the cyclooxygenase active site, resulting in altered interactions with inhibitors and altered Tyr385 radical behavior.  相似文献   

7.
Self-inactivation imposes an upper limit on bioactive prostanoid synthesis by prostaglandin H synthase (PGHS). Inactivation of PGHS peroxidase activity has been found to begin with Intermediate II, which contains a tyrosyl radical. The structure of this radical is altered by cyclooxygenase inhibitors, such as indomethacin and flurbiprofen, and by replacement of heme by manganese protoporphyrin IX (forming MnPGHS-1). Peroxidase self-inactivation in inhibitor-treated PGHS-1 and MnPGHS-1 was characterized by stopped-flow spectroscopic techniques and by chromatographic and mass spectrometric analysis of the metalloporphyrin. The rate of peroxidase inactivation was about 0.3 s(-)1 in inhibitor-treated PGHS-1 and much slower in MnPGHS-1 (0.05 s(-)1); as with PGHS-1 itself, the peroxidase inactivation rates were independent of peroxide concentration and structure, consistent with an inactivation process beginning with Intermediate II. The changes in metalloporphyrin absorbance spectra during inactivation of inhibitor-treated PGHS-1 were similar to those observed with PGHS-1 but were rather distinct in MnPGHS-1; the kinetics of the spectral transition from Intermediate II to the next species were comparable to the inactivation kinetics in each case. In contrast to the situation with PGHS-1 itself, significant amounts of heme degradation occurred during inactivation of inhibitor-treated PGHS-1, producing iron chlorin and heme-protein adduct species. Structural perturbations at the peroxidase site (MnPGHS-1) or at the cyclooxygenase site (inhibitor-treated PGHS-1) thus can influence markedly the kinetics and the chemistry of PGHS-1 peroxidase inactivation.  相似文献   

8.
Wu G  Kulmacz RJ  Tsai AL 《Biochemistry》2003,42(46):13772-13777
The peroxidase and cyclooxygenase activities of prostaglandin H synthase-1 (PGHS-1) both become irreversibly inactivated during reaction with peroxide. Sequential stopped-flow absorbance measurements with a chromogenic peroxidase cosubstrate previously were used to evaluate the kinetics of peroxidase inactivation during reaction of PGHS-1 with peroxide [Wu, G., et al. (1999) J. Biol. Chem. 274, 9231-7]. This approach has now been adapted to use a chromogenic cyclooxygenase substrate to analyze the detailed kinetics of cyclooxygenase inactivation during reaction of PGHS-1 with several hydroperoxides. In the absence of added reducing cosubstrates, which maximizes the levels of oxidized enzyme intermediates expected to lead to inactivation, cyclooxygenase activity was lost as fast as, or somewhat faster than, peroxidase activity. Cyclooxygenase inactivation kinetics appeared to be sensitive to the structure of the peroxide used. The addition of reducing cosubstrate during reaction of PGHS-1 with peroxide protected the peroxidase activity to a much greater degree than the cyclooxygenase activity. The results suggest a new concept of PGHS inactivation: that distinct damage can occur at the two active sites during side reactions of Intermediate II, which forms during reaction of PGHS with peroxide and which contains two oxidants, a ferryl heme in the peroxidase site, and a tyrosyl free radical in the cyclooxygenase site.  相似文献   

9.
Prostaglandin H synthase (PGHS) is a self-activating and self-inactivating enzyme. Both the peroxidase and cyclooxygenase activities have a limited number of catalytic turnovers. Sequential stopped-flow measurements were used to analyze the kinetics of PGHS-1 peroxidase self-inactivation during reaction with several different hydroperoxides. The inactivation followed single exponential kinetics, with a first-order rate constant of 0.2-0.5 s-1 at 24 degrees C. This rate was independent of the peroxide species and concentration used, strongly suggesting that the self-inactivation process originates after formation of Compound I and probably with Intermediate II, which contains an oxyferryl heme and a tyrosyl radical. Kinetic scan and rapid scan experiments were used to monitor the heme changes during the inactivation process. The results from both experiments converged to a simple, linear, two-step mechanism in which Intermediate II is first converted in a faster step (0.5-2 s-1) to a new compound, Intermediate III, which undergoes a subsequent slower (0.01-0.05 s-1) transition to a terminal species. Rapid-quench and high pressure liquid chromatography analysis indicated that Intermediate III likely retains an intact heme group that is not covalently linked with the PGHS-1 protein.  相似文献   

10.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS) is thought to involve a multistep mechanism with several radical intermediates. The proposed mechanism begins with the transfer of the C13 pro-(S) hydrogen atom from the substrate arachidonic acid (AA) to the Tyr385 radical in PGHS, followed by oxygen insertion and several bond rearrangements. The importance of the hydrogen-transfer step to controlling the overall kinetics of cyclooxygenase catalysis has not been directly examined. We quantified the non-competitive primary kinetic isotope effect (KIE) for both PGHS-1 and -2 using several deuterated AAs, including 13-pro-(S) d-AA, 13,13-d2-AA and 10, 10, 13,13-d4-AA. The primary KIE for steady-state cyclooxygenase catalysis, Dkcat, ranged between 1.8 and 2.3 in oxygen electrode measurements. The intrinsic KIE of AA radical formation by C13 pro-(S) hydrogen abstraction in PGHS-1 was estimated to be 1.9-2.3 using rapid freeze-quench EPR kinetic analysis of anaerobic reactions and computer modeling to a mechanism that includes a slow formation of a pentadienyl AA radical and a rapid equilibration of the AA radical with a tyrosyl radical, NS1c. The observation of similar values for steady-state and pre-steady state KIEs suggests that hydrogen abstraction is a rate-limiting step in cyclooxygenase catalysis. The large difference of the observed KIE from that of plant lipoxygenases indicates that PGHS and lipoxygenases have very different mechanisms of hydrogen transfer.  相似文献   

11.
Prostaglandin H synthase-1 (PGHS-1) is a bifunctional heme protein catalyzing both a peroxidase reaction, in which peroxides are converted to alcohols, and a cyclooxygenase reaction, in which arachidonic acid is converted into prostaglandin G2. Reaction of PGHS-1 with peroxide forms Intermediate I, which has an oxyferryl heme and a porphyrin radical. An intramolecular electron transfer from Tyr385 to Intermediate I forms Intermediate II, which contains two oxidants: an oxyferryl heme and the Tyr385 radical required for cyclooxygenase catalysis. Self-inactivation of the peroxidase begins with Intermediate II, but it has been unclear which of the two oxidants is involved. The kinetics of tyrosyl radical, oxyferryl heme, and peroxidase inactivation were examined in reactions of PGHS-1 reconstituted with heme or mangano protoporphyrin IX with a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid (15-HPETE), and ethyl hydrogen peroxide (EtOOH). Tyrosyl radical formation was significantly faster with 15-HPETE than with EtOOH and roughly paralleled oxyferryl heme formation at low peroxide levels. However, the oxyferryl heme intensity decayed much more rapidly than the tyrosyl radical intensity at high peroxide levels. The rates of reactions for PGHS-1 reconstituted with MnPPIX were approximately an order of magnitude slower, and the initial species formed displayed a wide singlet (WS) radical, rather than the wide doublet radical observed with PGHS-1 reconstituted with heme. Inactivation of the peroxidase activity during the reaction of PGHS-1 with EtOOH or 15-HPETE correlated with oxyferryl heme decay, but not with changes in tyrosyl radical intensity or EPR line shape, indicating that the oxyferryl heme, and not the tyrosyl radical, is responsible for the self-destructive peroxidase side reactions. Computer modeling to a minimal mechanism was consistent with oxyferryl heme being the source of peroxidase inactivation.  相似文献   

12.
Hydroperoxides are known to induce the formation of tyrosyl free radicals in prostaglandin (PG) H synthase. To evaluate the role of these radicals in cyclooxygenase catalysis we have analyzed the temporal correlation between radical formation and substrate conversion during reaction of the synthase with arachidonic acid. PGH synthase reacted with equimolar levels of arachidonic acid generated sequentially the wide doublet (34 G peak-to-trough) and wide singlet (32 G peak-to-trough) tyrosyl radical signals previously reported for reaction with hydroperoxide. The kinetics of formation and decay of the doublet signal corresponded reasonably well with those of cyclooxygenase activity. However, the wide singlet free radical signal accumulated only after prostaglandin formation had ceased, indicating that the wide singlet is not likely to be an intermediate in cyclooxygenase catalysis. When PGH synthase was reacted with 25 equivalents of arachidonic acid, the wide doublet and wide singlet radical signals were not observed. Instead, a narrower singlet (24 G peak-to-trough) tyrosyl radical was generated, similar to that found upon reaction of indomethacin-treated synthase with hydroperoxide. Only about 11 mol of prostaglandin were formed per mol of synthase before complete self-inactivation of the cyclooxygenase, far less than the 170 mol/mol synthase produced under standard assay conditions. Phenol (0.5 mM) increased the extent of cyclooxygenase reaction by only about 50%, in contrast to the 460% stimulation seen under standard assay conditions. These results indicate that the narrow singlet tyrosyl radical observed in the reaction with high levels of arachidonate in this study and by Lassmann et al. (Lassmann, G., Odenwaller, R., Curtis, J.F., DeGray, J.A., Mason, R.P., Marnett, L.J., and Eling, T.E. (1991) J. Biol. Chem. 266, 20045-20055) is associated with abnormal cyclooxygenase activity and is probably nonphysiological. In titrations of the synthase with arachidonate or with hydroperoxide, the loss of enzyme activity and destruction of heme were linear functions of the amount of titrant added. Complete inactivation of cyclooxygenase activity was found at about 10 mol of arachidonate, ethyl hydrogen peroxide, or hydrogen peroxide per mol of synthase heme; maximal bleaching of the heme Soret absorbance peak was found with 10 mol of ethyl hydroperoxide or 20 mol of either arachidonate or hydrogen peroxide per mol of synthase heme. The peak concentration of the wide doublet tyrosyl radical did not change appreciably with increased levels of ethyl hydroperoxide. In contrast, higher levels of hydroperoxide gave higher levels of the wide singlet radical species, in parallel with enzyme inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Hydroperoxide-induced tyrosyl radicals are putative intermediates in cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2. Rapid-freeze EPR and stopped-flow were used to characterize tyrosyl radical kinetics in PGHS-1 and -2 reacted with ethyl hydrogen peroxide. In PGHS-1, a wide doublet tyrosyl radical (34-35 G) was formed by 4 ms, followed by transition to a wide singlet (33-34 G); changes in total radical intensity paralleled those of Intermediate II absorbance during both formation and decay phases. In PGHS-2, some wide doublet (30 G) was present at early time points, but transition to wide singlet (29 G) was complete by 50 ms. In contrast to PGHS-1, only the formation kinetics of the PGHS-2 tyrosyl radical matched the Intermediate II absorbance kinetics. Indomethacin-treated PGHS-1 and nimesulide-treated PGHS-2 rapidly formed narrow singlet EPR (25-26 G in PGHS-1; 21 G in PGHS-2), and the same line shapes persisted throughout the reactions. Radical intensity paralleled Intermediate II absorbance throughout the indomethacin-treated PGHS-1 reaction. For nimesulide-treated PGHS-2, radical formed in concert with Intermediate II, but later persisted while Intermediate II relaxed. These results substantiate the kinetic competence of a tyrosyl radical as the catalytic intermediate for both PGHS isoforms and also indicate that the heme redox state becomes uncoupled from the tyrosyl radical in PGHS-2.  相似文献   

14.
Prostanoids are a group of potent bioactive lipids produced by oxygenation of arachidonate or one of several related polyunsaturated fatty acids. Cellular prostaglandin biosynthesis is tightly regulated, with a large part of the control exerted at the level of cyclooxygenase catalysis by prostaglandin H synthase (PGHS). The two known isoforms of PGHS have been assigned distinct pathophysiological functions, and their cyclooxygenase activities are subject to differential cellular control. This review considers the contributions to cellular catalytic control of the two PGHS isoforms by intracellular compartmentation, accessory proteins, arachidonate levels, and availability of hydroperoxide activator.  相似文献   

15.
Prostaglandin-H-synthase (PGHS) is a bifunctional enzyme catalyzing cyclooxygenase and peroxidase reactions and undergoing irreversible inactivation during catalysis. A new method for kinetic studies of both PGHS activities in the course of cyclooxygenase as well as peroxidase reactions and also preincubation with hydroperoxides is suggested. It is shown that peroxidase activity is retained after complete cyclooxygenase inactivation and cyclooxygenase activity is retained after complete peroxidase inactivation. Two-stage cyclooxygenase inactivation occurs on preincubation of PGHS with hydrogen peroxide. Studies on inactivation under various conditions indicate that chemical mechanisms of cyclooxygenase and peroxidase inactivation are different. The data allow development of kinetic models.  相似文献   

16.
Prostaglandin H synthase has two distinct catalytic activities: a cyclooxygenase activity that forms prostaglandin G2 from arachidonic acid; and a peroxidase activity that reduces prostaglandin G2 to prostaglandin H2. Lipid hydroperoxides, such as prostaglandin G2, also initiate the cyclooxygenase reaction, probably via peroxidase reaction cycle enzyme intermediates. The relation between the binding sites for lipid substrates of the two activities was investigated with an analysis of the effects of arachidonic and docosahexaenoic acids on the reaction kinetics of the peroxidase activity, and their effects on the ability of a lipid hydroperoxide to initiate the cyclooxygenase reaction. The cyclooxygenase activity of pure ovine synthase was found to have an apparent Km value for arachidonate of 5.3 microM and a Ki value (competetive inhibitor) for docosahexaenoate of 5.2 microM. When present at 20 microM neither fatty acid had a significant effect on the apparent Km value of the peroxidase for 15-hydroperoxyeicosatetraenoic acid: the values were 7.6 microM in the absence of docosahexaenoic acid and 5.9 microM in its presence, and (using aspirin-treated synthase) 13.7 microM in the absence of arachidonic acid and 15.7 microM in its presence. Over a range of 1 to 110 microM the level of arachidonate had no significant effect on the initiation of the cyclooxygenase reaction by 15-hydroperoxyeicosatetraenoic acid. The inability of either arachidonic acid or docosahexaenoic acid to interfere with the interaction between the peroxidase and lipid hydroperoxides indicates that the cyclooxygenase and peroxidase activities of prostaglandin H synthase have distinct binding sites for their lipid substrates.  相似文献   

17.
Regulation of cyclooxygenase catalysis by hydroperoxides   总被引:2,自引:0,他引:2  
Activation of cyclooxygenase catalysis in prostaglandin H synthase-1 and -2 by peroxide-dependent formation of a tyrosyl radical is emerging as an important part of regulating cellular production of bioactive prostanoids. This review discusses the mechanism of tyrosyl radical formation and the influence of peroxide, fatty acid, peroxidase cosubstrate, and protein structure on the activation process and cyclooxygenase catalysis.  相似文献   

18.
In this work, we investigated the reaction of ferric Mycobacterium tuberculosis truncated hemoglobin O (trHbO) with hydrogen peroxide. Stopped-flow spectrophotometric experiments under single turnover conditions showed that trHbO reacts with H(2)O(2) to give transient intermediate(s), among which is an oxyferryl heme, different from a typical peroxidase Compound I (oxyferryl heme pi-cation radical). EPR spectroscopy indicated evidence for both tryptophanyl and tyrosyl radicals, whereas redox titrations demonstrated that the peroxide-treated protein product retains 2 oxidizing eq. We propose that Compound I formed transiently is reduced with concomitant oxidation of Trp(G8) to give the detected oxoferryl heme and a radical on Trp(G8) (detected by EPR of the trHbO Tyr(CD1)Phe mutant). In the wild-type protein, the Trp(G8) radical is in turn reduced rapidly by Tyr(CD1). In a second cycle, Trp(G8) may be reoxidized by the ferryl heme to yield ferric heme and two protein radicals. In turn, these migrate to form tyrosyl radicals on Tyr(55) and Tyr(115), which lead, in the absence of a reducing substrate, to oligomerization of the protein. Steady-state kinetics in the presence of H(2)O(2) and the one-electron donor 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) indicated that trHbO has peroxidase activity, in accord with the presence of typical peroxidase intermediates. These findings suggest an oxidation/reduction function for trHbO and, by analogy, for other Group II trHbs.  相似文献   

19.
Prostaglandin-H-synthase (PGHS, EC 1.14.99.1) catalyzes the first committed step in biosynthesis of all prostaglandins, thromboxanes, and prostacyclins by converting arachidonic acid to prostaglandin H(2) (PGH(2)). PGHS exhibits two enzymatic activities: cyclooxygenase activity converting arachidonic acid to prostaglandin G(2) (PGG(2)) and peroxidase activity reducing the hydroperoxide PGG(2) to the corresponding alcohol, PGH(2). Despite the many investigations of the kinetics of PGHS, many features such as the absence of competition and mutual activation between the cyclooxygenase and peroxidase activities cannot be explained in terms of existing schemes. In this work we have studied the influence of different electron donors (N,N,N ,N -tetramethyl-p-phenylenediamine, L-epinephrine, 2,2 -azinobis(3-ethylbenzthiazoline-6-sulfonic acid), potassium ferrocyanide) on the PGHS activities. The proposed scheme describes independent but interconnected cyclooxygenase and peroxidase activities of PGHS. It also explains the experimental data obtained in the present work and known from the literature.  相似文献   

20.
Prostaglandin endoperoxide H synthases (PGHSs) catalyze the committed step in the biosynthesis of prostaglandins and thromboxane, the conversion of arachidonic acid, two molecules of O(2), and two electrons to prostaglandin endoperoxide H(2) (PGH(2)). Formation of PGH(2) involves an initial oxygenation of arachidonate to yield PGG(2) catalyzed by the cyclooxygenase activity of the enzyme and then a reduction of the 15-hydroperoxyl group of PGG(2) to form PGH(2) catalyzed by the peroxidase activity. The cyclooxygenase active site is a hydrophobic channel that protrudes from the membrane binding domain into the core of the globular domain of PGHS. In the crystal structure of Co(3+)-heme ovine PGHS-1 complexed with arachidonic acid, 19 cyclooxygenase active site residues are predicted to make a total of 50 contacts with the substrate (Malkowski, M. G, Ginell, S., Smith, W. L., and Garavito, R. M. (2000) Science 289, 1933-1937); two of these are hydrophilic, and 48 involve hydrophobic interactions. We performed mutational analyses to determine the roles of 14 of these residues and 4 other closely neighboring residues in arachidonate binding and oxygenation. Mutants were analyzed for peroxidase and cyclooxygenase activity, and the products formed by various mutants were characterized. Overall, the results indicate that cyclooxygenase active site residues of PGHS-1 fall into five functional categories as follows: (a) residues directly involved in hydrogen abstraction from C-13 of arachidonate (Tyr-385); (b) residues essential for positioning C-13 of arachidonate for hydrogen abstraction (Gly-533 and Tyr-348); (c) residues critical for high affinity arachidonate binding (Arg-120); (d) residues critical for positioning arachidonate in a conformation so that when hydrogen abstraction does occur the molecule is optimally arranged to yield PGG(2) versus monohydroperoxy acid products (Val-349, Trp-387, and Leu-534); and (e) all other active site residues, which individually make less but measurable contributions to optimal catalytic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号