首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Osteocyte apoptosis is known to trigger targeted bone resorption. In the present study, we developed an osteocyte-viability-based trabecular bone remodeling (OVBR) model. This novel remodeling model, combined with recent advanced simulation methods and analysis techniques, such as the element-by-element 3D finite element method and the ITS technique, was used to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to various loading and unloading conditions. Different levels of unloading simulated the disuse condition of bed rest or microgravity in space. The amount of bone loss and microstructural deterioration correlated with the magnitude of unloading. The restoration of bone mass upon the reloading condition was achieved by thickening the remaining trabecular architecture, while the lost trabecular plates and rods could not be recovered by reloading. Compared to previous models, the predictions of bone resorption of the OVBR model are more consistent with physiological values reported from previous experiments. Whereas osteocytes suffer a lack of loading during disuse, they may suffer overloading during the reloading phase, which hampers recovery. The OVBR model is promising for quantitative studies of trabecular bone loss and microstructural deterioration of patients or astronauts during long-term bed rest or space flight and thereafter bone recovery.  相似文献   

2.
Bone’s response to increased or reduced loading/disuse is a feature of many clinical circumstances, and our daily life, as habitual activities change. However, there are several misconceptions regarding what constitutes loading or disuse and why the skeleton gains or loses bone. The main purpose of this article is to discuss the fundamentals of the need for bone to experience the effects of loading and disuse, why bone loss due to disuse occurs, and how it is the target of skeletal physiology which drives pathological bone loss in conditions that may not be seen as being primarily due to disuse. Fundamentally, if we accept that hypertrophy of bone in response to increased loading is a desirable occurrence, then disuse is not a pathological process, but simply the corollary of adaptation to increased loads. If adaptive processes occur to increase bone mass in response to increased load, then the loss of bone in disuse is the only way that adaptation can fully tune the skeleton to prevailing functional demands when loading is reduced. The mechanisms by which loading and disuse cause bone formation or resorption are the same, although the direction of any changes is different. The osteocyte and osteoblast are the key cells involved in sensing and communicating the need for changes in mass or architecture as a result of changes in experienced loading. However, as those cells are affected by numerous other influences, the responses of bone to loading or disuse are not simple, and alter under different circumstances. Understanding the principles of disuse and loading and the mechanisms underlying them therefore represents an important feature of bone physiology and the search for targets for anabolic therapies for skeletal pathology.  相似文献   

3.
Microgravity, similar to disuse immobilization on earth, causes rapid bone loss. This loss is believed to be an adaptive response to the reduced musculoskeletal forces in space and occurs gradually enough that changes occurring during short duration space flight are not a concern. Bone loss, however, will be a major impediment for long duration missions if effective countermeasures are not developed and implemented. Bed rest is used to simulate the reduced mechanical forces in humans and was used to test the hypothesis that oral alendronate would reduce the effects of long duration (17 weeks) inactivity on bone. Eight male subjects were given daily oral doses of alendronate during 17 weeks of horizontal bed rest and compared with 13 male control subjects not given the drug. Efficacy was evaluated based on measurements of bone markers, calcium balance and bone density performed before, during and after the bed rest. The results show that oral alendronate attenuates most of the characteristic changes in bone that are associated with long duration bed rest and presumably space flight.  相似文献   

4.
Weight bearing and physical activity are important mechanical stimuli to bone growth and metabolism, and microgravity, such a space flight and/or bed rest, induces bone resorption and bone loss. An increased excretion of urinary Ca, an increased bone resorption and a decreased bone mineral density (BMD) have been observed in bed rest experiment of healthy subjects. Bone resorption markers show the specific circadian rhythms in human. Cross-linked carboxyl-terminal telopeptide of type I collagen (ICTP) and the urinary excretion of deoxypyridinoline (Dpy) are the highest in the early morning and the lowest late at night. Bed rest immobilization might influence these rhythms, due to no mechanical loading with loss of daily life activity. Bone resorption markers in healthy subjects had been compared between before and during bed rest to determine disruption of diurnal rhythms of bone resorption.  相似文献   

5.
The potential for loss of bone mineral mass due to space flight was recognized by space scientists even before man's first venture into micro-gravity. Early life science studies in both the U.S. and Russian space programs attempted to measure the effects of reduced gravity on skeletal homeostasis, and these measurements have become more sophisticated with time. Bone-related measurements have typically included: bone mineral density measured by X-ray absorptiometry and more recently CT scanning; bonerelated hormones and other biochemical markers of bone turnover; and calcium excretion and balance. These measurements, conducted over the last 4 decades, have shed light on the nature of disuse bone loss and have provided preliminary information regarding bone recovery. Ground-based analog (bed rest) studies have provided information complementary to the space flight data and have allowed the testing of various countermeasures to bone loss. In spite of the wealth of knowledge obtained thus far, many questions remain regarding bone loss, bone recovery, and the factors affecting these skeletal processes. This paper will summarize the skeletal data obtained to date by the U.S. and Russian space programs and in ground-based disuse studies. In addition, related body composition data will be briefly discussed, as will possible countermeasures to space flight-induced bone loss.  相似文献   

6.
7.
Reduced skeletal loading typically leads to bone loss because bone formation and bone resorption become unbalanced. Hibernation is a natural model of musculoskeletal disuse because hibernating animals greatly reduce weight-bearing activity, and therefore, they would be expected to lose bone. Some evidence suggests that small mammals like ground squirrels, bats, and hamsters do lose bone during hibernation, but the mechanism of bone loss is unclear. In contrast, hibernating bears maintain balanced bone remodeling and preserve bone structure and strength. Differences in the skeletal responses of bears and smaller mammals to hibernation may be due to differences in their hibernation patterns; smaller mammals may excrete calcium liberated from bone during periodic arousals throughout hibernation, leading to progressive bone loss over time, whereas bears may have evolved more sophisticated physiological processes to recycle calcium, prevent hypercalcemia, and maintain bone integrity. Investigating the roles of neural and hormonal control of bear bone metabolism could give valuable insight into translating the mechanisms that prevent disuse-induced bone loss in bears into novel therapies for treating osteoporosis.  相似文献   

8.
Disuse has been shown to cause a rapid and dramatic loss of skeletal mass and strength in the load-bearing bones of young and mature animals and humans. However, little is known about the skeletal effects of disuse in aged mammals. The present study was designed to determine whether the skeletal effects of disuse are maintained with extreme age. Fischer 344/Brown Norway male rats (6 and 32 mo old) were hindlimb suspended (HS) or housed individually for 2 wk. Trabecular volume and microarchitecture in the proximal tibia were significantly decreased by HS only in young rats. HS significantly reduced cortical bone mineral density and increased cortical porosity only in old rats by inducing new pore formation. Cortical pore diameter was also increased in old rats, regardless of loading condition. Ex vivo osteogenic and adipogenic cultures established from each group demonstrated that age and HS decreased osteoblastogenesis. Age, but not HS, decreased sensitivity to endogenous bone morphogenetic protein stimulation, as measured by treatment with exogenous Noggin. Adipocyte development increased with age, whereas HS suppressed sensitivity to peroxisome proliferator-activated receptor-gamma-induced differentiation. Serum insulin-like growth factor I levels were reduced with HS in young rats and with age in control and HS rats. These results suggest that the site of bone loss due to disuse is altered with age and that the loss of osteogenic potential with disuse in the old rats may be due to the combined effects of decreased insulin-like growth factor I levels and sensitivity, as well as diminished bone morphogenetic protein production.  相似文献   

9.
Our purpose was to determine the effects of a mechanical loading intervention on mass, geometry, and strength of rat cortical bone during a period of disuse concurrent with calcium deficiency (CD). Adult female rats were assigned to unilateral hindlimb immobilization, immobilized-loaded, or control (standard chow, 1.85% calcium) treatments. Both immobilized groups were fed a CD rat chow (0.01% calcium) to induce high bone turnover. Three times weekly, immobilized-loaded rats were subjected to 36 cycles of 4-point bending of the immobilized lower leg. After 6 wk, the immobilized rats exhibited decreased tibial shaft bone mineral density (-12%), ultimate load (-19%), and stiffness (-20%; tested in 3-point bending to failure) vs. control rats. Loading prevented this decline in bone density and attenuated decreases in ultimate load and stiffness. Elastic modulus was unaffected by disuse or loading. Bone cross-sectional area in the immobilized-loaded rats was equivalent to that of control animals, even though endocortical resorption continued unabated. On the medial periosteum, percent mineralizing surface doubled vs. that in immobilized rats. This loading regimen stimulated periosteal mineralization and maintained bone mineral density, thereby attenuating the loss in bone strength incurred with disuse and concurrent calcium deficiency.  相似文献   

10.
Weight-bearing bone is constantly adapting its structure and function to mechanical environments. Loading through routine exercises stimulates bone formation and prevents bone loss, but unloading through bed rest and cast immobilization as well as exposure to weightlessness during spaceflight reduces its mass and strength. In order to elucidate the mechanism underlying unloading-driven bone adaptation, ground-based in vitro and in vivo analyses have been conducted using rotating cell culturing and hindlimb suspension. Focusing on gene expression studies in osteoblasts and hindlimb suspension studies, this minireview introduces our recent understanding on bone homeostasis under weightlessness in space. Most of the existing data indicate that unloading has the opposite effects to loading through common signaling pathways. However, a question remains as to whether any pathway unique to unloading (and not to loading) may exist.  相似文献   

11.
Studies of skeletal muscle disuse, either in patients on bed rest or experimentally in animals (immobilization), have demonstrated that decreased protein synthesis is common, with transient parallel increases in protein degradation. Muscle disuse atrophy involves a process of transition from slow to fast myosin fiber types. A shift toward glycolysis, decreased capacity for fat oxidation, and substrate accumulation in atrophied muscles have been reported, as has accommodation of the liver with an increased gluconeogenic capacity. Recent studies have modeled skeletal muscle disuse by using cyclic stretch of differentiated myotubes (C2C12), which mimics the loading pattern of mature skeletal muscle, followed by cessation of stretch. We utilized this model to determine the metabolic changes using non-targeted metabolomics analysis of the media. We identified increases in amino acids resulting from muscle atrophy-induced protein degradation (largely sarcomere) that occurs with muscle atrophy that are involved in feeding the Kreb’s cycle through anaplerosis. Specifically, we identified increased alanine/proline metabolism (significantly elevated proline, alanine, glutamine, and asparagine) and increased α-ketoglutaric acid, the proposed Kreb’s cycle intermediate being fed by the alanine/proline metabolic anaplerotic mechanism. Additionally, several unique pathways not clearly delineated in previous studies of muscle unloading were seen, including: (1) elevated keto-acids derived from branched chain amino acids (i.e. 2-ketoleucine and 2-keovaline), which feed into a metabolic pathway supplying acetyl-CoA and 2-hydroxybutyrate (also significantly increased); and (2) elevated guanine, an intermediate of purine metabolism, was seen at 12 h unloading. Given the interest in targeting different aspects of the ubiquitin proteasome system to inhibit protein degradation, this C2C12 system may allow the identification of direct and indirect alterations in metabolism due to anaplerosis or through other yet to be identified mechanisms using a non-targeted metabolomics approach.  相似文献   

12.
Conditions of disuse such as bed rest, space flight, and immobilization result in decreased mechanical loading of bone, which is associated with reduced bone mineral density and increased fracture risk. Mechanisms involved in this process are not well understood but involve the suppression of osteoblast function. To elucidate the influence of mechanical unloading on osteoblasts, a rotating wall vessel (RWV) was employed as a ground based model of simulated microgravity. Mouse MC3T3-E1 osteoblasts were grown on microcarrier beads for 14 days and then placed in the RWV for 24 h. Consistent with decreased bone formation during actual spaceflight conditions, alkaline phosphatase and osteocalcin expression were decreased by 80 and 50%, respectively. In addition, runx2 expression and AP-1 transactivation, key regulators of osteoblast differentiation and bone formation, were reduced by more than 60%. This finding suggests that simulated microgravity could promote dedifferentiation and/or transdifferentiation to alternative cell types; however, markers of adipocyte, chondrocyte, and myocyte lineages were not induced by RWV exposure. Taken together, our results indicate that simulated microgravity may suppress osteoblast differentiation through decreased runx2 and AP-1 activities.  相似文献   

13.
Wan YM  Ma YJ  Zhang XY  Zeng B  Wang HH  Li YH 《生理学报》2005,57(3):384-388
为研究模拟失重对成骨细胞细胞外基质mRNA的影响,实验采用离体人鼠成骨细胞水平轴回转模拟失重效应,用RT-PCR技术分别检测成骨细胞中骨桥素(osteopontin,OPN)及骨粘连蛋白(osteonectin,ON)mRNA的水平,并观察细胞培养液中碱性磷酸酶(alkaline phosphatase,ALP)的活性和骨钙素(osteocalcim, BGP)含量的变化。结果观察到,分别回转24、48、72h后,OPN、ON的mRNA含量及细胞培养液中BGP含量均显著下降,细胞培养液中ALP活性也呈下降趋势。上述结果表明,模拟失重后成骨细胞OPN及ON的表达下调,进而使BGP及ALP的分泌量减少,从而导致骨钙化能力降低,提示模拟失重导致的细胞外基质蛋白基因表达下降可能是模拟火重引起骨丢失的原因之一。  相似文献   

14.
Many of the changes that accompany physical inactivity coincide with those that occur during aging. These changes are generally grouped under the term of 'disuse' (or "lack of use" or "inappropriately modulated stimulation"). Studies of long-term space travel have revealed that weightlessness in space also induces changes resembling those of aging and physical inactivity. The relationship between disuse (due to bed rest, insufficient exercise, or lack of gravity) and aging has some definite practical implications. As life expectancy is lenghtened in all populations worldwide, the number of elderly with varying degrees of disability leading to reduced physical activity also increases. Changes induced by bed rest as a consequence of disease may also be superimposed on aging changes and further diminish physiologic reserves and accelerate pathology. Therefore, the study of disuse, irrespective of its etiology, may serve as a model for understanding not only some of the functional changes induced by lack of activity and/or gravity but also some of the disabilities of old age. Indeed, a better understanding of disuse phenomena will make it possible to establish programs of prevention and rehabilitation that will ameliorate both disuse and aging deficits.  相似文献   

15.
The purpose of this study was to evaluate the effect of prolonged immobilization on bone, in order to investigate how skeletal turnover adapts to bed rest. We examined indices of bone formation and bone resorption in the serum and urine of fifty-four patients (26 males and 28 females) immobilized after an episode of paralytic stroke. The length of immobilization ranged from 30 to 180 days. A significant, time-dependent increase in markers of resorption - urinary pyridinoline (Pyr) and deoxypyridinoline (D-Pyr), serum Type I collagen cross-linked C-telopeptide (ICTP) - was observed in immobilized patients, as compared to free-living healthy subjects. The positive correlation between resorption markers increase and the length of immobilization suggests that the rate of bone resorption did not decrease with time. On the other hand, the levels of markers of bone formation - bone-specific alkaline phosphatase (B-ALP), and the carboxyl-terminal propeptide of Type I procollagen (PICP) - remained within the normal range in all patients, regardless the length of immobilization. Our results would indicate an uncoupling between bone formation and bone resorption during bed rest, and suggest that the bone collagen break-down was not a self-limiting process in immobilized patients, and that a new equilibrium or "steady state" in response to the reduced load was not reached in the skeleton.  相似文献   

16.
IGF-I stimulates osteoblast proliferation, bone formation, and increases bone volume in normal weight-bearing animals. During skeletal unloading or loss of weight bearing, bone becomes unresponsive to the anabolic effects of insulin-like growth factor I (IGF-I). To determine whether skeletal reloading after a period of unloading increases bone responsiveness to IGF-I, we examined bone structure and formation in response to IGF-I under different loading conditions. Twelve-week-old rats were divided into six groups: loaded (4 wk), unloaded (4 wk), and unloaded/reloaded (2/2 wk), and treated with IGF-I (2.5 mg x kg(-1) x day(-1)) or vehicle during the final 2 wk. Cortical bone formation rate (BFR), cancellous bone volume and architecture in the secondary spongiosa (tibia and vertebrae), and total volume and calcified volume in the primary spongiosa (tibia) were assessed. Periosteal BFR decreased during unloading, remained low during reloading in the vehicle-treated group, but was dramatically increased in IGF-I-treated animals. Cancellous bone volume decreased with unloading and increased with reloading, but the effect was exaggerated in the tibia of IGF-I-treated animals. Total and calcified volumes in the primary spongiosa decreased during unloading in the vehicle-treated animals. IGF-I treatment prevented the loss in volume. These data show that reloading after a period of skeletal unloading increases bone responsiveness to IGF-I, and they suggest that IGF-I may be of therapeutic use in patients who have lost bone as a consequence of prolonged skeletal disuse.  相似文献   

17.
The hibernating bear is an excellent model for disuse osteoporosis in humans because it is a naturally occurring large animal model. Furthermore, bears and humans have similar lower limb skeletal morphology, and bears walk plantigrade like humans. Black bears (Ursus americanus) may not develop disuse osteoporosis during long periods of disuse (i.e. hibernation) because they maintain osteoblastic bone formation during hibernation. As a consequence, bone volume, mineral content, porosity, and strength are not adversely affected by annual periods of disuse. In fact, cortical bone bending strength has been shown to increase with age in hibernating black bears without a significant change in porosity. Other animals require remobilization periods 2-3 times longer than the immobilization period to recover the bone lost during disuse. Our findings support the hypothesis that black bears, which hibernate for as long as 5-7 months annually, have evolved biological mechanisms to mitigate the adverse effects of disuse on bone porosity and strength.  相似文献   

18.
Resistance exercise as a countermeasure to disuse-induced bone loss.   总被引:4,自引:0,他引:4  
During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.  相似文献   

19.
Bone loss due to osteoporosis or disuse such as in paraplegia or microgravity is a significant health problem. As a treatment for osteoporosis, brief exposure of intact animals or humans to low magnitude and high frequency (LMHF) mechanical loading has been shown to normalize and prevent bone loss. However, the underlying molecular changes and the target cells by which LMHF mechanical loading alleviate bone loss are not known. Here, we hypothesized that direct application of LMHF mechanical loading to osteoblasts alters their cell responses, preventing decreased bone formation induced by disuse or microgravity conditions. To test our hypothesis, preosteoblast 2T3 cells were exposed to a disuse condition using the random positioning machine (RPM) and intervened with an LMHF mechanical load (0.1–0.4 g at 30 Hz for 10–60 min/day). Exposure of 2T3 cells to the RPM decreased bone formation responses as determined by alkaline phosphatase (ALP) activity and mineralization even in the presence of a submaximal dose of BMP4 (20 ng/ml). However, LMHF mechanical loading prevented the RPM‐induced decrease in ALP activity and mineralization. Mineralization induced by LMHF mechanical loading was enhanced by treatment with bone morphogenic protein 4 (BMP4) and blocked by the BMP antagonist noggin, suggesting a role for BMPs in this response. In addition, LMHF mechanical loading rescued the RPM‐induced decrease in gene expression of ALP, runx2, osteomodulin, parathyroid hormone receptor 1, and osteoglycin. These findings suggest that preosteoblasts may directly respond to LMHF mechanical loading to induce differentiation responses. The mechanosensitive genes identified here provide potential targets for pharmaceutical treatments that may be used in combination with low level mechanical loading to better treat osteoporosis or disuse‐induced bone loss. J. Cell. Biochem. 106: 306–316, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
A randomized, double‐blind, sham‐controlled, feasibility and dosing study was undertaken to determine if a common pulsing electromagnetic field (PEMF) treatment could moderate the substantial osteopenia that occurs after forearm disuse. Ninety‐nine subjects were randomized into four groups after a distal radius fracture, or carpal surgery requiring immobilization in a cast. Active or identical sham PEMF transducers were worn on the distal forearm for 1, 2, or 4 h/day for 8 weeks starting after cast removal (“baseline”) when bone density continues to decline. Bone mineral density (BMD) and bone geometry were measured in the distal forearm by dual energy X‐ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) at entry (“baseline”) and 8, 16, and 24 weeks later. Significant average BMD losses after baseline were observed in the affected forearm at all time points (5–7% distally and 3–4% for the radius/ulna shaft). However, after adjusting for age, gender, and baseline BMD there was no evidence of a positive effect of active versus sham PEMF treatment on bone loss by DXA or pQCT for subjects completing all visits (n = 82, ~20 per group) and for an intent‐to‐treat analysis (n = 99). Regardless of PEMF exposure, serum bone‐specific alkaline phosphatase (BSAP) was normal at baseline and 8 weeks, while serum c‐terminal collagen teleopeptide (CTX‐1) was markedly elevated at baseline and less so at 8 weeks. Although there was substantial variability in disuse osteopenia, these results suggested that the particular PEMF waveform and durations applied did not affect the continuing substantial disuse bone loss in these subjects. Bioelectromagnetics 32:273–282, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号