首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The c-Jun N-terminal kinases (JNKs) are encoded by three genes that yield 10 isoforms through alternative mRNA splicing. The roles of each JNK isoform in the many putative biological responses where the JNK pathway is activated are still unclear. To examine the cellular responses mediated by different JNK isoforms, gain-of-function JNK1 polypeptides were generated by fusing the upstream mitogen-activated protein kinase kinase, MKK7, with p46JNK1alpha or p46JNK1beta. The MKK7-JNK fusion proteins, which exhibited constitutive activity in 293T cells, were stably expressed in Swiss 3T3 fibroblasts using retrovirus-mediated gene transfer. Swiss 3T3 cells expressing either of the MKK7-JNK polypeptides were equally sensitized to induction of cell death following serum withdrawal. To search for other cellular responses that may be selectively regulated by the JNK1 isoforms, the gene expression profiles of Swiss 3T3 cells expressing MKK7-JNK1alpha or MKK7-JNK1beta were compared with empty vector-transfected control cells. Affymetrix Genechips identified 46 genes for which expression was increased in MKK7-JNK-expressing cells relative to vector control cells. Twenty genes including those for c-Jun, MKP-7, interluekin-1 receptor family member ST2L/ST2, and c-Jun-binding protein were induced similarly by MKK7-JNK1alpha and MKK7-JNK1beta proteins, whereas 13 genes were selectively increased by MKK7-JNK1alpha and 13 genes were selectively increased by MKK7-JNK1beta. The set of genes selectively induced by MKK7-JNK1beta included a number of known interferon-stimulated genes (ISG12, ISG15, IGTP, and GTPI). Consistent with these gene expression changes, Swiss 3T3 cells expressing MKK7-JNK1beta exhibited increased resistance to vesicular stomatitis virus-induced cell death. These findings reveal evidence for JNK isoform-selective gene regulation and support a role for distinct JNK isoforms in specific cellular responses.  相似文献   

2.
The stress kinase mitogen-activated protein kinase kinase 7 (MKK7) is a specific activator of c-Jun N-terminal kinase (JNK), which controls various physiological processes, such as cell proliferation, apoptosis, differentiation, and migration. Here we show that genetic inactivation of MKK7 resulted in an extended period of oscillation in circadian gene expression in mouse embryonic fibroblasts. Exogenous expression in cultured mammalian cells of an MKK7-JNK fusion protein that functions as a constitutively active form of JNK induced phosphorylation of PER2, an essential circadian component. Furthermore, JNK interacted with PER2 at both the exogenous and endogenous levels, and MKK7-mediated JNK activation increased the half-life of PER2 protein by inhibiting its ubiquitination. Notably, the PER2 protein stabilization induced by MKK7-JNK fusion protein reduced the degradation of PER2 induced by casein kinase 1ε. Taken together, our results support a novel function for the stress kinase MKK7 as a regulator of the circadian clock in mammalian cells at steady state.  相似文献   

3.
Zhan X  Kaoud TS  Dalby KN  Gurevich VV 《Biochemistry》2011,50(48):10520-10529
Arrestins make up a small family of proteins with four mammalian members that play key roles in the regulation of multiple G protein-coupled receptor-dependent and -independent signaling pathways. Although arrestins were reported to serve as scaffolds for MAP kinase cascades, promoting the activation of JNK3, ERK1/2, and p38, the molecular mechanisms involved were not elucidated, and even the direct binding of arrestins with MAP kinases was never demonstrated. Here, using purified proteins, we show that both nonvisual arrestins directly bind JNK3α2 and its upstream activator MKK4, and that the affinity of arrestin-3 for these kinases is higher than that of arrestin-2. Reconstitution of the MKK4-JNK3α2 signaling module from pure proteins in the presence of different arrestin-3 concentrations showed that arrestin-3 acts as a "true" scaffold, facilitating JNK3α2 phosphorylation by bringing the two kinases together. Both the level of JNK3α2 phosphorylation by MKK4 and JNK3α2 activity toward its substrate ATF2 increase at low and then decrease at high arrestin-3 levels, yielding a bell-shaped concentration dependence expected with true scaffolds that do not activate the upstream kinase or its substrate. Thus, direct binding of both kinases and true scaffolding is the molecular mechanism of action of arrestin-3 on the MKK4-JNK3α2 signaling module.  相似文献   

4.
Docking interactions of the JNK scaffold protein WDR62   总被引:1,自引:0,他引:1  
JNK (c-Jun N-terminal kinase) is part of a MAPK (mitogen-activated protein kinase) signalling cascade. Scaffold proteins simultaneously associate with various components of the MAPK signalling pathway and play a crucial role in signal transmission and MAPK regulation. WDR62 (WD repeat domain 62) is a JNK scaffold protein. Recessive mutations within WDR62 result in severe cerebral cortical malformation. In the present study we demonstrate the association of WDR62 with endogenous and overexpressed proteins of both JNK2 and the JNK2-activating kinase MKK7 (MAPK kinase 7). Association of WDR62 with JNK2 and MKK7 occurs via direct protein-protein interactions. We mapped the docking domain of WDR62 responsible for the association with JNK. WDR62 interacts with all JNK isoforms through a D domain motif located at the C-terminus. A WDR62 mutant lacking the putative JNK-binding domain fails to activate and recruit JNK to cellular granules. Furthermore, a synthetic peptide composed of the WDR62 docking domain inhibits JNK2 activity in vitro. WDR62 association with JNK2 requires both the JNK CD and ED domains, and the binding requisite is distinct from that of the previously described JNK2 association with JIP1 (JNK-interacting protein 1). Next, we characterized the association between WDR62 and MKK7. WDR62 associates directly with the MKK7β1 isoform independently of JNK binding, but fails to interact with MKK7α1. Furthermore, MKK7β1 recruits a protein phosphatase that dephosphorylates WDR62. Interestingly, a premature termination mutation in WDR62 that results in severe brain developmental defects does not abrogate WDR62 association with either JNK or MKK7. Therefore such mutations represent a loss of WDR62 function independent of JNK signalling.  相似文献   

5.
S6K (ribosomal S6 kinase p70, p70S6K) activation requires phosphorylation at two stages. The first phosphorylation is independent of insulin stimulation and mediated by an unknown kinase. The second phosphorylation is mediated by mTOR in insulin dependent manner. In this study, we identified JNK1 (c-Jun N-terminal kinase 1) as a kinase in the first phosphorylation. S6K protein was phosphorylated by JNK1 at S411 and S424 in the carboxyl terminal autoinhibitory domain. The phosphorylation was observed in kinase assay with purified S6K as a substrate, and in cells after JNK1 activation by TNF-α or MEKK1 expression. The phosphorylation was detected in JNK2 null cells, but not in JNK1 null cells after TNF-α treatment. When JNK1 activation was inhibited by MKK7 knockdown, the phosphorylation was blocked in cells. The phosphorylation led to S6K protein degradation in NF-κB deficient cells. The degradation was blocked by inhibition of proteasome activity with MG132. In wide type cells, the phosphorylation did not promote S6K degradation when IKK2 (IKKβ, IκB kinase beta) was activated. Instead, the phosphorylation allowed S6K activation by mTOR, which stabilizes S6K protein. In IKK2 null cells or cells treated by IKK2 inhibitor, the phosphorylation led to S6K degradation. These data suggest that S6K is phosphorylated by JNK1 and the phosphorylation makes S6K protein unstable in the absence of IKK2 activation. This study provides a mechanism for regulation of S6K protein stability.  相似文献   

6.
The c-Jun N-terminal kinase (JNK) pathway forms part of the mitogen-activated protein kinase (MAPK) signaling pathways comprising a sequential three-tiered kinase cascade. Here, an upstream MAP3K (MEKK1) phosphorylates and activates a MAP2K (MKK4 and MKK7), which in turn phosphorylates and activates the MAPK, JNK. The C-terminal kinase domain of MEKK1 (MEKK-C) is constitutively active, while MKK4/7 and JNK are both activated by dual phosphorylation of S/Y, and T/Y residues within their activation loops, respectively. While improvements in the purification of large quantities of active JNKs have recently been made, inadequacies in their yield, purity, and the efficiency of their phosphorylation still exist. We describe a novel and robust method that further improves upon the purification of large yields of highly pure, phosphorylated JNK1β1, which is most suitable for biochemical and biophysical characterization. Codon harmonization of the JNK1β1 gene was used as a precautionary measure toward increasing the soluble overexpression of the kinase. While JNK1β1 and its substrate ATF2 were both purified to >99% purity as GST fusion proteins using GSH-agarose affinity chromatography and each cleaved from GST using thrombin, constitutively-active MEKK-C and inactive MKK4 were separately expressed in E. coli as thioredoxin-His6-tagged proteins and purified using urea refolding and Ni2+-IMAC, respectively. Activation of JNK1β1 was then achieved by successfully reconstituting the JNK MAPK activation cascade in vitro; MEKK-C was used to activate MKK4, which in turn was used to efficiently phosphorylate and activate large quantities of JNK1β1. Activated JNK1β1 was thereafter able to phosphorylate ATF2 with high catalytic efficiency.  相似文献   

7.
JSAP1 (also termed JIP3) is a scaffold protein that interacts with specific components of the JNK signaling pathway. Apoptosis signal-regulating kinase (ASK) 1 is a MAP kinase kinase kinase that activates the JNK and p38 mitogen-activated protein (MAP) kinase cascades in response to environmental stresses such as reactive oxygen species. Here we show that JSAP1 bound ASK1 and enhanced ASK1- and H(2)O(2)-induced JNK activity. ASK1 phosphorylated JSAP1 in vitro and in vivo, and the phosphorylation facilitated interactions of JSAP1 with SEK1/MKK4, MKK7 and JNK3. Furthermore, ASK1-dependent phosphorylation was required for JSAP1 to recruit and thereby activate JNK in response to H(2)O(2). We thus conclude that JSAP1 functions not only as a simple scaffold, but it dynamically participates in signal transduction by forming a phosphorylation-dependent signaling complex in the ASK1-JNK signaling module.  相似文献   

8.
9.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), belonging to the mitogen-activated protein kinase family, plays an important role in stress signaling. SAPK/JNK activation requires the phosphorylation of both Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 and MKK7 have been identified as the dual specificity kinases. In this study, we generated mkk7(-/-) mouse embryonic stem (ES) cells in addition to sek1(-/-) cells and compared the two kinases in terms of the activation and phosphorylation of JNK. Although SAPK/JNK activation by various stress signals was markedly impaired in both sek1(-/-) and mkk7(-/-) ES cells, there were striking differences in the dual phosphorylation profile. The severe impairment observed in mkk7(-/-) cells was accompanied by a loss of the Thr phosphorylation of JNK without marked reduction in its Tyr-phosphorylated level. On the other hand, Thr phosphorylation of JNK in sek1(-/-) cells was also attenuated in addition to a decreased level of its Tyr phosphorylation. Analysis in human embryonic kidney 293T cells transfected with a kinase-dead SEK1 or a Thr-Pro-Phe mutant of JNK1 revealed that SEK1-induced Tyr phosphorylation of JNK1 was followed by additional Thr phosphorylation by MKK7. Furthermore, SEK1 but not MKK7 was capable of binding to JNK1 in 293T cells. These results indicate that the Tyr and Thr residues of SAPK/JNK are sequentially phosphorylated by SEK1 and MKK7, respectively, in the stress-stimulated ES cells.  相似文献   

10.
11.
Numerous studies have demonstrated the neuroprotective effects of estrogen in experimental cerebral ischemia. To investigate molecular mechanisms of estrogen neuroprotection in global ischemia, immunoblotting, immunohistochemistry and Nissel-staining analysis were used. Our results showed that chronic pretreatment with beta-estradiol 3-benzoate (E2) enhanced Akt1 activation and reduced the activation of mixed-lineage kinase 3 (MLK3), mitogen-activated protein kinase kinase 4/7 (MKK4/7), and c-Jun N-terminal kinase 1/2 (JNK1/2) in the hippocampal CA1 subfield during reperfusion after 15 min of global ischemia. In addition, E2 reduced downstream JNK nuclear and non-nuclear components, c-Jun and Bcl-2 phosphorylation and Fas ligand protein expression induced by ischemia/reperfusion. Administration of phosphoinositide 3-kinase (PI3K) inhibitor LY 294,002 prevented both activation of Akt1 and inhibition of MLK3, MKK4/7 and JNK1/2. The interaction between ERalpha and the p85 subunit of PI3K was also examined. E2 and antiestrogen ICI 182,780 promoted and prevented this interaction, respectively. Furthermore, ICI 182,780 blocked both the activation of Akt1 and the inhibition of MLK3, MKK4/7 and JNK1/2. Photomicrographs of cresyl violet-stained brain sections showed that E2 reduced CA1 neuron loss after 5 days of reperfusion, which was abolished by ICI 182,780 and LY 294,002. Our data indicate that in response to estrogen, ERalpha interacts with PI3K to activate Akt1, which may inhibit the MLK3-MKK4/7-JNK1/2 pathway to protect hippocampal CA1 neurons against global cerebral ischemia in male rats.  相似文献   

12.
HMG-CoA reductase inhibitors (i.e., statins) attenuate C-terminal isoprenylation of Rho GTPases, thereby inhibiting UV-C-induced activation of c-Jun-N-terminal kinases/stress-activated protein kinases (JNKs/SAPKs). Inhibition of UV-C-triggered JNK/SAPK activation by lovastatin is due to inhibition of Rac-SEK1/MKK4-mediated phosphorylation of JNKs/SAPKs at Thr183/Tyr185. UV-C-stimulated phosphorylation of p38 kinase (Thr180/Tyr182) is also impaired by lovastatin. Cell killing provoked by UV-C irradiation was significantly inhibited by lovastatin. This was paralleled by a reduced frequency of chromosomal aberrations, accelerated recovery from UV-C-induced transient replication blockage, inhibition of Chk1 kinase activation and impaired cyclinB1 expression. Furthermore, UV-C-induced activation of caspases and apoptotic death was largely reduced by lovastatin. Inhibition of JNK/SAPK by transient overexpression of dominant-negative JNK1/SAPK1 also conferred resistance to UV-C light and attenuated activation of caspase 3. Based on the data, we suggest that lovastatin-provoked resistance to UV-C light is due to the inhibition of UV-C-inducible Rac-SEK1/MKK4-JNK/SAPK-dependent signal mechanisms regulating cell cycle progression and activation of caspases and apoptotic death.  相似文献   

13.
14.
In this study we report the activation of c-Jun N-terminal kinase (JNK) in human K562 erythroleukemia cells undergoing hemin-mediated erythroid differentiation, which occurs concomitantly with activation of heat shock factor 2 (HSF2) and leads to a simultaneous in vivo phosphorylation of c-Jun. The activation of JNK occurs through activation of mitogen-activated protein kinase kinase (MKK) 4 and not by activation of MKK7 or inhibition of JNK-directed phosphatases. We have previously shown that overexpression of the HSF2-beta isoform inhibits the activation of HSF2 upon hemin-induced erythroid differentiation. Here we demonstrate that HSF2-beta overexpression blocks the hemin-induced activation of the MKK4-JNK pathway, suggesting an erythroid lineage-specific JNK activation likely to be regulated by HSF2.  相似文献   

15.
Arsenic is a widespread environmental toxic agent that has been shown to cause diverse tissue and cell damage and at the same time to be an effective anti-cancer therapeutic agent. The objective of this study is to explore the signaling mechanisms involved in arsenic toxicity. We show that the IkappaB kinase beta (IKKbeta) plays a crucial role in protecting cells from arsenic toxicity. Ikkbeta(-)(/)(-) mouse 3T3 fibroblasts have decreased expression of antioxidant genes, such as metallothionein 1 (Mt1). In contrast to wild type and IKKbeta-reconstituted Ikkbeta(-)(/)(-) cells, IKKbeta-null cells display a marked increase in arsenic-induced reactive oxygen species (ROS) accumulation, which leads to activation of the MKK4-c-Jun NH(2)-terminal kinase (JNK) pathway, c-Jun phosphorylation, and apoptosis. Pretreatment with the antioxidant N-acetylcysteine (NAC) and expression of MT1 in the Ikkbeta(-)(/)(-) cells prevented JNK activation; moreover, NAC pretreatment, MT1 expression, MKK4 ablation, and JNK inhibition all protected cells from death induced by arsenic. Our data show that two signaling pathways appear to be important for modulating arsenic toxicity. First, the IKK-NF-kappaB pathway is crucial for maintaining cellular metallothionein-1 levels to counteract ROS accumulation, and second, when this pathway fails, excessive ROS leads to activation of the MKK4-JNK pathway, resulting in apoptosis.  相似文献   

16.
Viral manipulation of transduction pathways associated with key cellular functions such as survival, response to microbial infection, and cytoskeleton reorganization can provide the supportive milieu for a productive infection. Here, we demonstrate that vaccinia virus (VACV) infection leads to activation of the stress-activated protein kinase (SAPK)/extracellular signal-regulated kinase (ERK) 4/7 (MKK4/7)-c-Jun N-terminal protein kinase 1/2 (JNK1/2) pathway; further, the stimulation of this pathway requires postpenetration, prereplicative events in the viral replication cycle. Although the formation of intracellular mature virus (IMV) was not affected in MKK4/7- or JNK1/2-knockout (KO) cells, we did note an accentuated deregulation of microtubule and actin network organization in infected JNK1/2-KO cells. This was followed by deregulated viral trafficking to the periphery and enhanced enveloped particle release. Furthermore, VACV infection induced alterations in the cell contractility and morphology, and cell migration was reduced in the JNK-KO cells. In addition, phosphorylation of proteins implicated with early cell contractility and cell migration, such as microtubule-associated protein 1B and paxillin, respectively, was not detected in the VACV-infected KO cells. In sum, our findings uncover a regulatory role played by the MKK4/7-JNK1/2 pathway in cytoskeleton reorganization during VACV infection.  相似文献   

17.
We established a new in vivo arrestin-3-JNK3 interaction assay based on bioluminescence resonance energy transfer (BRET) between JNK3-luciferase and Venus-arrestins. We tested the ability of WT arrestin-3 and its 3A mutant that readily binds β2-adrenergic receptors as well as two mutants impaired in receptor binding, Δ7 and KNC, to directly bind JNK3 and to promote JNK3 phosphorylation in cells. Both receptor binding-deficient mutants interact with JNK3 significantly better than WT and 3A arrestin-3. WT arrestin-3 and Δ7 mutant robustly promoted JNK3 activation, whereas 3A and KNC mutants did not. Thus, receptor binding, JNK3 interaction, and JNK3 activation are three distinct arrestin functions. We found that the KNC mutant, which tightly binds ASK1, MKK4, and JNK3 without facilitating JNK3 phosphorylation, has a dominant-negative effect, competitively decreasing JNK activation by WT arrestin-3. Thus, KNC is a silent scaffold, a novel type of molecular tool for the suppression of MAPK signaling in living cells.  相似文献   

18.
Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival.  相似文献   

19.
ASK1-signaling promotes c-Myc protein stability during apoptosis   总被引:2,自引:0,他引:2  
We previously reported that JNK is involved in the regulation of c-Myc-mediated apoptosis triggered by UV irradiation and anticancer drug treatment. Here we show that ASK1 is an upstream regulator for c-Myc-mediated apoptosis triggered by UV, and we found a direct role for Ser-62 and Ser-71 in the regulation of protein stability and function of c-Myc. The ASK1-JNK pathway enhanced the protein stability of c-Myc through phosphorylation at Ser-62 and Ser-71, which was required for c-Myc-dependent apoptosis by ASK1-signaling. Interestingly, ASK1-signaling attenuated the degradation of ubiquitinated c-Myc without affecting the ubiquitination process. Together, these findings indicate that the ASK1-JNK pathway promotes the proapoptotic activity of c-Myc by modulating c-Myc protein stability through phosphorylation at Ser-62 and Ser-71.  相似文献   

20.
JNK, a member of the mitogen-activated protein kinases (MAPKs), is activated by the MAPK kinases SEK1 and MKK7 in response to environmental stresses. In the present study, the effects of CdCl2 treatment on MAPK phosphorylation and HSP70 expression were examined in mouse embryonic stem (ES) cells lacking the sek1 gene, the mkk7 gene, or both. Following CdCl2 exposure, the phosphorylation of JNK, p38, and ERK was suppressed in sek1-/- mkk7-/- cells. When sek1-/- or mkk7-/- cells were treated with CdCl2, JNK phosphorylation, but not the phosphorylation of either p38 or ERK, was markedly reduced, while a weak reduction in p38 phosphorylation was observed in sek1-/- cells. Thus, both SEK1 and MKK7 are required for JNK phosphorylation, whereas their role in p38 and ERK phosphorylation could overlap with that of another kinase. We also observed that CdCl2-induced HSP70 expression was abolished in sek1-/- mkk7-/- cells, was reduced in sek1-/- cells, and was enhanced in mkk7-/- cells. Similarly, the phosphorylation of heat shock factor 1 (HSF1) was decreased in sek1-/- mkk7-/- and sek1-/- cells, but was increased in mkk7-/- cells. Transfection with siRNA specific for JNK1, JNK2, p38, ERK1, or ERK2 suppressed CdCl2-induced HSP70 expression. In contrast, silencing of p38 or p38 resulted in further accumulation of HSP70 protein. These results suggest that HSP70 expression is up-regulated by SEK1 and down-regulated by MKK7 through distinct MAPK isoforms in mouse ES cells treated with CdCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号