首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the ligand binding properties of the human GnRH receptor (hGnRH-R), 24 site-specific mutants within transmembrane helices (TMH) 1, 2, and 5 and the extracellular loop 2 (E2) were generated. These mutants were analyzed by using a functional reporter gene assay, monitoring receptor signaling via adenylate cyclase to a cAMP-responsive element fused to Photinus pyralis luciferase. The functional behavior of 14 receptor mutants, capable of G-protein coupling and signaling, was studied in detail with different well described agonistic and antagonistic peptide ligands. Furthermore, the binding constants were determined in displacement binding experiments with the antagonist [125I]Cetrorelix. The substitution of residues K36, Q204, W205, H207, Q208, F20, F213, F216, and S217 for alanine had no or only a marginal effect on ligand binding and signaling. In contrast, substitution of N87, Eg9, D9, R179, W206, Y211, F214, and T215 for alanine resulted in receptor proteins neither capable of ligand binding nor signal transduction. Within those mutants affecting ligand binding and signaling to various degrees, W101A, N102A, and N212Q differentiate between agonists and antagonists. Thus, in addition to N102 already described, the residues W101 in TMH2 and N212 in TMH5 are important for the architecture of the ligand-binding pocket. Based on the experimental data, three-dimensional models for binding of the superagonist D-Trp6-GnRH (Triptorelin) and the antagonist Cetrorelix to the hGnRH-R are proposed. Both decapeptidic ligands are bound to the receptor in a bent conformation with distinct interactions within the binding pocket formed by all TMHs, E2, and E3. The antagonist Cetrorelix with bulky hydrophobic N-terminal amino acids interacts with quite different receptor residues, a hint at the failure to induce an active, G protein-coupling receptor conformation.  相似文献   

2.
Charged residues in the beta10-M1 linker region ("pre-M1") are important in the expression and function of neuromuscular acetylcholine receptors (AChRs). The perturbation of a salt bridge between pre-M1 residue R209 and loop 2 residue E45 has been proposed as being a principle event in the AChR gating conformational "wave." We examined the effects of mutations to all five residues in pre-M1 (positions M207-P211) plus E45 in loop 2 in the mouse alpha(1)-subunit. M207, Q208, and P211 mutants caused small (approximately threefold) changes in the gating equilibrium constant (K(eq)), but the changes for R209, L210, and E45 were larger. Of 19 different side chain substitutions at R209 on the wild-type background, only Q, K, and H generated functional channels, with the largest change in K(eq) (67-fold) from R209Q. Various R209 mutants were functional on different E45 backgrounds: H, Q, and K (E45A), H, A, N, and Q (E45R), and K, A, and N (E45L). Phi values for R209 (on the E45A background), L210, and E45 were 0.74, 0.35, and 0.80, respectively. Phi values for R209 on the wt and three other backgrounds could not be estimated because of scatter. The average coupling energy between 209/45 side chains (six different pairs) was only -0.33 kcal/mol (for both alpha subunits, combined). Pre-M1 residues are important for expression of functional channels and participate in gating, but the relatively modest changes in closed- vs. open-state energy caused mutations, the weak coupling energy between these residues and the functional activity of several unmatched-charge pairs are not consistent with the perturbation of a salt bridge between R209 and E45 playing the principle role in gating.  相似文献   

3.
The influenza viruses contain a segmented, negative stranded RNA genome. Each RNA segment is covered by multiple copies of the nucleoprotein (NP). X-ray structures have shown that NP contains well-structured domains juxtaposed with regions of missing electron densities corresponding to loops. In this study, we tested if these flexible loops gated or promoted RNA binding and RNA-induced oligomerization of NP. We first performed molecular dynamics simulations of wt NP monomer and trimer in comparison with the R361A protein mutated in the RNA binding groove, using the H1N1 NP as the initial structure. Calculation of the root-mean-square fluctuations highlighted the presence of two flexible loops in NP trimer: loop 1 (73–90), loop 2 (200–214). In NP, loops 1 and 2 formed a 10–15 Å-wide pinch giving access to the RNA binding groove. Loop 1 was stabilized by interactions with K113 of the adjacent β-sheet 1 (91–112) that interacted with the RNA grove (linker 360–373) via multiple hydrophobic contacts. In R361A, a salt bridge formed between E80 of loop 1 and R208 of loop 2 driven by hydrophobic contacts between L79 and W207, due to a decreased flexibility of loop 2 and loop 1 unfolding. Thus, RNA could not access its binding groove in R361A; accordingly, R361A had a much lower affinity for RNA than NP. Disruption of the E80-R208 interaction in the triple mutant R361A-E80A-E81A increased its RNA binding affinity and restored its oligomerization back to wt levels in contrast with impaired levels of R361A. Our data suggest that the flexibility of loops 1 and 2 is required for RNA sampling and binding which likely involve conformational change(s) of the nucleoprotein.  相似文献   

4.
Insulin-like growth factor–binding protein-5 (IGFBP-5) has been shown to bind to fibroblast extracellular matrix (ECM). Extracellular matrix binding of IGFBP-5 leads to a decrease in its affinity for insulin-like growth factor-I (IGF-I), which allows IGF-I to better equilibrate with IGF receptors. When the amount of IGFBP-5 that is bound to ECM is increased by exogenous addition, IGF-I’s effect on fibroblast growth is enhanced. In this study we identified the specific basic residues in IGFBP-5 that mediate its binding to porcine smooth-muscle cell (pSMC) ECM. An IGFBP-5 mutant containing alterations of basic residues at positions 211, 214, 217, and 218 had the greatest reduction in ECM binding, although three other mutants, R214A, R207A/K211N, and K202A/R206N/R207A, also had major decreases. In contrast, three other mutants, R201A/K202N/R206N/R208A, and K217N/R218A and K211N, had only minimal reductions in ECM binding. This suggested that residues R207 and R214 were the most important for binding, whereas alterations in K211 and R218, which align near them, had minimal effects. To determine the effect of a reduction in ECM binding on the cellular replication response to IGF-I, pSMCs were transfected with the mutant cDNAs that encoded the forms of IGFBPs with the greatest changes in ECM binding. The ECM content of IGFBP-5 from cultures expressing the K211N, R214A, R217A/R218A, and K202A/R206N/R207A mutants was reduced by 79.6 and 71.7%, respectively, compared with cells expressing the wild-type protein. In contrast, abundance of the R201A/K202N/R206N/R208A mutant was reduced by only 14%. Cells expressing the two mutants with reduced ECM binding had decreased DNA synthesis responses to IGF-I, but the cells expressing the R201A/K202N/R206N/R208A mutant responded well to IGF-I. The findings suggest that specific basic amino acids at positions 207 and 214 mediate the binding of IGFBP-5 to pSMC/ECM. Smooth-muscle cells that constitutively express the mutants that bind weakly to ECM are less responsive to IGF-I, suggesting that ECM binding of IGFBP-5 is an important variable that determines cellular responsiveness.  相似文献   

5.
Retroviruses favor target-DNA (tDNA) distortion and particular bases at sites of integration, but the mechanism underlying HIV-1 selectivity is unknown. Crystal structures revealed a network of prototype foamy virus (PFV) integrase residues that distort tDNA: Ala188 and Arg329 interact with tDNA bases, while Arg362 contacts the phosphodiester backbone. HIV-1 integrase residues Ser119, Arg231, and Lys258 were identified here as analogs of PFV integrase residues Ala188, Arg329 and Arg362, respectively. Thirteen integrase mutations were analyzed for effects on integrase activity in vitro and during virus infection, yielding a total of 1610 unique HIV-1 integration sites. Purine (R)/pyrimidine (Y) dinucleotide sequence analysis revealed HIV-1 prefers the tDNA signature (0)RYXRY(4), which accordingly favors overlapping flexible dinucleotides at the center of the integration site. Consistent with roles for Arg231 and Lys258 in sequence specific and non-specific binding, respectively, the R231E mutation altered integration site nucleotide preferences while K258E had no effect. S119A and S119T integrase mutations significantly altered base preferences at positions −3 and 7 from the site of viral DNA joining. The S119A preference moreover mimicked wild-type PFV selectivity at these positions. We conclude that HIV-1 IN residue Ser119 and PFV IN residue Ala188 contact analogous tDNA bases to effect virus integration.  相似文献   

6.
We have carried out a molecular dynamics (MD) simulation of full-length HIV-1 integrase (IN) dimer complexed with viral DNA with the aim of gaining information about the enzyme motion and investigating the movement of the catalytic flexible loop (residues 140-149) thought to be essential in the catalytic mechanism of IN. During the simulation, we observed quite a different behavior of this region in the presence or absence of the viral DNA. In particular, the MD results underline the crucial role of the residue Tyr143 in the mechanism of integration of viral DNA into the host chromosome. The present findings confirm the experimental data (e.g., site-directed mutagenesis experiments) showing that the loop is involved in the integration reactions and its mobility is correlated with the catalytic activity of HIV-1 integrase.  相似文献   

7.
Resistance to HIV-1 integrase (IN) inhibitor raltegravir (RAL), is encoded by mutations in the IN region of the pol gene. The emergence of the N155H mutation was replaced by a pattern including the Y143R/C/H mutations in three patients with anti-HIV treatment failure. Cloning analysis of the IN gene showed an independent selection of the mutations at loci 155 and 143. Characterization of the phenotypic evolution showed that the switch from N155H to Y143C/R was linked to an increase in resistance to RAL. Wild-type (WT) IN and IN with mutations Y143C or Y143R were assayed in vitro in 3′end-processing, strand transfer and concerted integration assays. Activities of mutants were moderately impaired for 3′end-processing and severely affected for strand transfer. Concerted integration assay demonstrated a decrease in mutant activities using an uncleaved substrate. With 3′end-processing assay, IC50 were 0.4 µM, 0.9 µM (FC = 2.25) and 1.2 µM (FC = 3) for WT, IN Y143C and IN Y143R, respectively. An FC of 2 was observed only for IN Y143R in the strand transfer assay. In concerted integration, integrases were less sensitive to RAL than in ST or 3′P but mutants were more resistant to RAL than WT.  相似文献   

8.
Bovine pancreatic deoxyribonuclease I (DNase I) is an endonuclease which cleaves double-stranded DNA. Cocrystal structures of DNase I with oligonucleotides have revealed interactions between the side chains of several amino acids (N74, R111, N170, S206, T207, and Y211) and the DNA phosphates. The effects these interactions have on enzyme catalysis and DNA hydrolysis selectivity have been investigated by site-directed mutagenesis. Mutations to R111, N170, T207, and Y211 severely compromised activity toward both DNA and a small chromophoric substrate. A hydrogen bond between R111 (which interacts with the phosphate immediately 5' to the cutting site) and the essential amino acid H134 is probably required to maintain this histidine in the correct orientation for efficient hydrolysis. Both T207 and Y211 bind to the phosphate immediately 3' to the cleavage site. Additionally, T207 is involved in binding an essential, structural, calcium ion, and Y211 is the nearest neighbor to D212, a critical catalytic residue. N170 interacts with the scissile phosphate and appears to play a direct role in the catalytic mechanism. The mutation N74D, which interacts with a phosphate twice removed from the scissile group, strongly reduced DNA hydrolysis. However, a comparison of DNase I variants from several species suggests that certain amino acids, which allow interaction with phosphates (positively charged or hydrogen bonding), are tolerated. S206, which binds to a DNA phosphate two positions away from the cleavage site, appears to play a relatively unimportant role. None of the enzyme variants, including a triple mutation in which N74, R111, and Y211 were altered, affected DNA hydrolysis selectivity. This suggests that phosphate binding residues play no role in the selection of DNA substrates.  相似文献   

9.
Chillar A  Wu J  So SP  Ruan KH 《FEBS letters》2008,582(19):2863-2868
A peptide constrained to a conformation of second extracellular loop of human prostaglandin-E(2) (PGE(2)) receptor subtype3 (hEP3) was synthesized. The contacts between the peptide residues at S211 and R214, and PGE(2) were first identified by NMR spectroscopy. The results were used as a guide for site-directed mutagenesis of the hEP3 protein. The S211L and R214L mutants expressed in HEK293 cells lost binding to [(3)H]PGE(2). This study found that the non-conserved S211 and R214 of the hEP3 are involved in PGE(2) recognition, and implied that the corresponding residues in other subtype receptors could be important to distinguish the different configurations of PGE(2) ligand recognition sites.  相似文献   

10.
J Greenwald  V Le  S L Butler  F D Bushman  S Choe 《Biochemistry》1999,38(28):8892-8898
Replication of HIV-1 requires the covalent integration of the viral cDNA into the host chromosomal DNA directed by the virus-encoded integrase protein. Here we explore the importance of a protein surface loop near the integrase active site using protein engineering and X-ray crystallography. We have redetermined the structure of the integrase catalytic domain (residues 50-212) using an independent phase set at 1.7 A resolution. The structure extends helix alpha4 on its N-terminal side (residues 149-154), thus defining the position of the three conserved active site residues. Evident in this and in previous structures is a conformationally flexible loop composed of residues 141-148. To probe the role of flexibility in this loop, we replaced Gly 140 and Gly 149, residues that appear to act as conformational hinges, with Ala residues. X-ray structures of the catalytic domain mutants G149A and G140A/G149A show further rigidity of alpha4 and the adjoining loop. Activity assays in vitro revealed that these mutants are impaired in catalysis. The DNA binding affinity, however, is minimally affected by these mutants as assayed by UV cross-linking. We propose that the conformational flexibility of this active site loop is important for a postbinding catalytic step.  相似文献   

11.
To investigate the roles of the active site residues in the catalysis of Bacillus thuringiensis WB7 chitinase, twelve mutants, F201L, F201Y, G203A, G203D, D205E, D205N, D207E, D207N, W208C, W208R, E209D and E209Q were constructed by site-directed mutagenesis. The results showed that the mutants F201L, G203D, D205N, D207E, D207N, W208C and E209D were devoid of activity, and the loss of the enzymatic activities for F201Y, G203A, D205E, W208R and E209Q were 72, 70, 48, 31 and 29%, respectively. The pH-activity profiles indicated that the optimum pH for the mutants as well as for the wildtype enzyme was 8.0. E209Q exhibited a broader active pH range while D205E, G203A and F201Y resulted in a narrower active pH range. The pH range of activity reduced 1 unit for D205E, and 2 units for G203A and F201Y. The temperature-activity profiles showed that the optimum temperature for other mutants as well as wildtype enzyme was 60°C, but 50°C for G203A, which suggested that G203A resulted in a reduction of thermostability. The study indicated that the six active site residues involving in mutagenesis played an important part in WB7 chitinase. In addition, the catalytic mechanisms of the six active site residues in WB7 chitinase were discussed.  相似文献   

12.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

13.
The mitotic kinesin Eg5 plays an essential role in establishing the bipolar spindle. Recently, several antimitotic inhibitors have been shown to share a common binding region on Eg5. Considering the importance of Eg5 as a potential drug target for cancer chemotherapy it is essential to understand the molecular mechanism, by which these agents block Eg5 activity, and to determine the "key residues" crucial for inhibition. Eleven residues in the inhibitor binding pocket were mutated and the effects were monitored by kinetic analysis and mass spectrometry. Mutants R119A, D130A, P131A, I136A, V210A, Y211A and L214A abolish the inhibitory effect of monastrol. Results for W127A and R221A are less striking, but inhibitor constants are still considerably modified compared to wild-type Eg5. Only one residue, Leu214, was found to be essential for inhibition by STLC. W127A, D130A, V210A lead to increased K(i)(app) values, but binding of STLC is still tight. R119A, P131A, Y211A and R221A convert STLC into a classical rather than a tight-binding inhibitor with increased inhibitor constants. These results demonstrate that monastrol and STLC interact with different amino acids within the same binding region, suggesting that this site is highly flexible to accommodate different types of inhibitors. The drug specificity is due to multiple interactions not only with loop L5, but also with residues located in helices alpha2 and alpha3. These results suggest that tumour cells might develop resistance to Eg5 inhibitors, by expressing Eg5 point mutants that retain the enzyme activity, but prevent inhibition, a feature that is observed for certain tubulin inhibitors.  相似文献   

14.
Integration of viral DNA into the host cell genome is a critical step in the life cycle of HIV. This essential reaction is catalyzed by integrase (IN) through two steps, 3'-processing and DNA strand transfer. Integrase is an attractive target for drug design because there is no known cellular analogue and integration is essential for successful replication of HIV. A computational three-dimensional (3-D) database search was used to identify novel HIV-1 integrase inhibitors. Starting from the previously identified Y3 (4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid) binding site on the avian sarcoma virus integrase (ASV IN), a preliminary search of all compounds in the nonproprietary, open part of the National Cancer Institute 3-D database yielded a collection of 3100 compounds. A more rigorous scoring method was used to rescreen the 3100 compounds against both ASV IN and HIV-1 IN. Twenty-two of those compounds were selected for inhibition assays against HIV-1 IN. Thirteen of the 22 showed inhibitory activity against HIV-1 IN at concentrations less than 200 microM and three of them showed antiviral activities in HIV-1 infected CEM cells with effective concentrations (EC50) ranging from 0.8 to 200 microM. Analysis of the computer-generated binding modes of the active compounds to HIV-1 IN showed that simultaneous interaction with the Y3 site and the catalytic site is possible. In addition, interactions between the active compounds and the flexible loop involved in the binding of DNA by IN are indicated to occur. The structural details and the unique binding motif between the HIV-1 IN and its inhibitors identified in the present work may contribute to the future development of IN inhibitors.  相似文献   

15.
Lens epithelium-derived growth factor (LEDGF)/p75 is an important cellular co-factor for human immunodeficiency virus (HIV) replication. We originally identified LEDGF/p75 as a binding partner of integrase (IN) in human cells. The interaction has been mapped to the integrase-binding domain (IBD) of LEDGF/p75 located in the C-terminal part. We have subsequently shown that IN carrying the Q168A mutation remains enzymatically active but is impaired for interaction with LEDGF/p75. To map the integrase/LEDGF interface in more detail, we have now identified and characterized two regions within the enzyme involved in the interaction with LEDGF/p75. The first region centers around residues W131 and W132 while the second extends from I161 up to E170. For the different IN mutants the interaction with LEDGF/p75 and the enzymatic activities were determined. IN(W131A), IN(I161A), IN(R166A), IN(Q168A) and IN(E170A) are impaired for interaction with LEDGF/p75, but retain 3' processing and strand transfer activities. Due to impaired integration, an HIV-1 strain containing the W131A mutation in IN displays reduced replication capacity, whereas virus carrying IN(Q168A) is replication defective. Comparison of the wild-type IN-LEDGF/p75 co-crystal structure with that of the modelled structure of the IN(Q168A) and IN(W131A) mutant integrases corroborated our experimental data.  相似文献   

16.
N S Sampson  J R Knowles 《Biochemistry》1992,31(36):8482-8487
To determine what drives the closure of the active-site loop in the reaction catalyzed by triosephosphate isomerase, several residues involved in hydrogen bonding between the loop and the bulk of the protein have been altered. It was known from earlier work that the loop serves two functions: to stabilize the reaction intermediate (and the two transition states that flank it) and to prevent the loss of this unstable species into free solution. To discover what elements of the protein are necessary for proper closure of the loop, selective destabilization of the "open" and the "closed" forms of the enzyme with respect to one another has been attempted. The mutant Y164F isomerase has been prepared to evaluate the importance of the structure of the "open" form, and the mutant E129Q, Y208F, and S211A enzymes have allowed investigation of the "closed" form. The integrity of the loop itself has been destabilized by making the T172A isomerase. We have found that only those mutations that destabilize the "closed" form of the enzyme significantly perturb the catalytic properties of the isomerase. The second-order rate constants (kcat/Km) of the S211A and E129Q enzymes are reduced 30-fold, and that of the mutant Y208F enzyme is reduced 2000-fold, from the level of the wild-type enzyme. The dramatic drop in activity of the Y208F enzyme is accompanied by a 200-fold increase in the dissociation constant of the intermediate analogue phosphoglycolohydroxamate. The most important property of the mobile loop of triosephosphate isomerase lies, therefore, in the stability of the system when the active site contains ligand and the loop is closed.  相似文献   

17.
Tryptophan 214, the only tryptophan residue in human serum albumin, is located in the physiologically important subdomain 2A ligand binding site. In the present study the fluorescence lifetime of tryptophan 214 in the following human serum albumin (HSA) mutants with substitutions in subdomain 2A were determined: K195M, K199M, F211V, R218M, R218H, R218A, R222M, H242V, and R257M. An HSA mutant in which tryptophan was moved from subdomain 2A to subdomain 3A (W214L/Y411W) was also examined. Additionally, the fluorescence lifetime of tryptophan 214 in an HSA fragment consisting of subdomains 1A, 1B, and 2A (1A-1B-2A HSA) was determined. For those species expected to have the most dramatic changes in tryptophan microenvironment, W214L/Y411W and 1A-1B-2A HSA, clear changes in tryptophan lifetimes were observed. Significant changes were also seen for those species with mutations at position 218, which is next to tryptophan in the X-ray structure of HSA. However, significant changes were also observed for H242V and R257M, which contain substitutions at positions not immediately adjacent to tryptophan 214, highlighting the conformational flexibility of subdomain 2A.  相似文献   

18.
19.
Tanaka A  Nakamura H  Shiro Y  Fujii H 《Biochemistry》2006,45(8):2515-2523
FixL is a heme-based O(2) sensor, in which the autophosphorylation is regulated by the binding of exogenous ligands such as O(2) and CN(-). In this study, mutants of the heme distal Arg200, Arg208, Ile209, Ile210, and Arg214 residues of SmFixL were characterized biochemically and physicochemically, because it has been suggested that they are significant residues in ligand-linked kinase regulation. Measurements of the autoxidation rate, affinities, and kinetics of ligand binding revealed that all of the above residues are involved in stabilization of the O(2)-heme complex of FixL. However, Arg214 was found to be the only residue that is directly relevant to the ligand-dependent regulation of kinase activity. Although the wild type and R214K and R214Q mutants exhibited normal kinase regulation, R214A, R214M, R214H, and R214Y did not. (13)C and (15)N NMR analyses for (13)C(15)N(-) bound to the truncated heme domains of the Arg214 mutants indicated that, in the wild type and the foregoing two mutants, the heme moiety is present in a single conformation, but in the latter four, the conformations fluctuate possibly because of the lack of an interaction between the iron-bound ligand and residue 214. It is likely that such a rigid conformation of the ligand-bound form is important for the downregulation of histidine kinase activity. Furthermore, a comparison of the NMR data between the wild type and R214K and R214Q mutants suggests that a strong electrostatic interaction between residue 214 and the iron-bound ligand is not necessarily required for the single convergent structure and eventually for the downregulation of FixL.  相似文献   

20.
Mutations at amino acids 143, 148, and 155 in HIV-1 integrase (IN) define primary resistance pathways in subjects failing raltegravir (RAL)-containing treatments. Although each pathway appears to be genetically distinct, shifts in the predominant resistant virus population have been reported under continued drug pressure. To better understand this dynamic, we characterized the RAL susceptibility of 200 resistant viruses, and we performed sequential clonal analysis for selected cases. Patient viruses containing Y143R, Q148R, or Q148H mutations consistently exhibited larger reductions in RAL susceptibility than patient viruses containing N155H mutations. Sequential analyses of virus populations from three subjects revealed temporal shifts in subpopulations representing N155H, Y143R, or Q148H escape pathways. Evaluation of molecular clones isolated from different time points demonstrated that Y143R and Q148H variants exhibited larger reductions in RAL susceptibility and higher IN-mediated replication capacity (RC) than N155H variants within the same subject. Furthermore, shifts from the N155H pathway to either the Q148R or H pathway or the Y143R pathway were dependent on the amino acid substitution at position 148 and the secondary mutations in Y143R- or Q148R- or H-containing variants and correlated with reductions in RAL susceptibility and restorations in RC. Our observations in patient viruses were confirmed by analyzing site-directed mutations. In summary, viruses that acquire mutations defining the 143 or 148 escape pathways are less susceptible to RAL and exhibit greater RC than viruses containing 155 pathway mutations. These selective pressures result in the displacement of N155H variants by 143 or 148 variants under continued drug exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号