首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In this study, we investigated how the presence of anionic lipids influenced the stability and folding properties of the potassium channel KcsA. By using a combination of gel electrophoresis, tryptophan fluorescence and acrylamide quenching experiments, we found that the presence of the anionic lipid phosphatidylglycerol (PG) in a phosphatidylcholine (PC) bilayer slightly stabilized the tetramer and protected it from trifluoroethanol-induced dissociation. Surprisingly, the presence of phosphatidic acid (PA) had a much larger effect on the stability of KcsA and this lipid, in addition, significantly influenced the folding properties of the protein. The data indicate that PA creates some specificity over PG, and that it most likely stabilizes the tetramer via both electrostatic and hydrogen bond interactions.  相似文献   

2.
Bolivar JH  East JM  Marsh D  Lee AG 《Biochemistry》2012,51(30):6010-6016
The state of aggregation of potassium channel KcsA was determined as a function of lipid:protein molar ratio in bilayer membranes of the zwitterionic lipid phosphatidylcholine (PC) and of the anionic lipid phosphatidylglycerol (PG). EPR (electron paramagnetic resonance) with spin-labeled phospholipids was used to determine the number of motionally restricted lipids per KcsA tetramer. Unexpectedly, this number decreased with a decreasing lipid:KcsA tetramer molar ratio in the range of 88:1 to 30:1, consistent with sharing of annular lipid shells and KcsA-KcsA contact at high mole fractions of protein. Fluorescence quenching experiments with brominated phospholipids showed a decrease in fluorescence quenching at low lipid:KcsA tetramer mole ratios, also consistent with KcsA-KcsA contact at high mole fractions of protein. The effects of low mole ratios of lipid seen in EPR and fluorescence quenching experiments were more marked in bilayers of PC than in bilayers of PG, suggesting stronger association of PG than PC with KcsA. This was confirmed by direct measurement of lipid association constants using spin-labeled phospholipids, showing higher association constants for all anionic lipids than for PC. The results show that the probability of contacts between KcsA tetramers will be very low at lipid:protein molar ratios that are typical of native biological membranes.  相似文献   

3.
In this study, the roles of two anionic phospholipids—phosphatidic acid (PA), which is an important signaling molecule, and cardiolipin (CL), which plays a crucial role in the bioenergetics of the cell—in stabilizing the oligomeric structure of potassium channel KcsA were determined. The stability of KcsA was drastically increased as a function of PA or CL content (mol%) in phosphatidylcholine (PC) bilayers. Deletion of the membrane-associated N terminus significantly reduced channel stability at high levels of PA content; however, the intrinsic stability of this protein was marginally affected in the presence of CL. These studies indicate that the electrostatic-hydrogen bond switch between PA and N terminus, involving basic residues, is much stronger than the stabilizing effect of CL. Furthermore, the unique properties of the PA headgroup alter protein assembly and folding properties differently from the CL headgroup, and both lipids stabilize the tetrameric assembly via their specific interaction on the extra- or the intracellular side of KcsA.  相似文献   

4.
Membrane-active alcohol 2,2,2-trifluoroethanol has been proven to be an attractive tool in the investigation of the intrinsic stability of integral membrane protein complexes by taking K+-channel KcsA as a suitable and representative ion channel. In the present study, the roles of both cytoplasmic N and C termini in channel assembly and stability of KcsA were determined. The N terminus (1–18 residues) slightly increased tetramer stability via electrostatic interactions in the presence of 30 mol.% acidic phosphatidylglycerol (PG) in phosphatidylcholine lipid bilayer. Furthermore, the N terminus was found to be potentially required for efficient channel (re)assembly. In contrast, truncation of the C terminus (125–160 residues) greatly facilitated channel reversibility from either a partially or a completely unfolded state, and this domain was substantially involved in stabilizing the tetramer in either the presence or absence of PG in lipid bilayer. These studies provide new insights into how extramembranous parts play their crucial roles in the assembly and stability of integral membrane protein complexes.  相似文献   

5.
In this study we have used electrospray ionization mass spectrometry (ESI-MS) to investigate interactions between the bacterial K(+) channel KcsA and membrane phospholipids. KcsA was reconstituted into lipid vesicles of variable lipid composition. These vesicles were directly analyzed by ESI-MS or mixed with trifluoroethanol (TFE) before analysis. In the resulting mass spectra, non-covalent complexes of KcsA and phospholipids were observed with an interesting lipid specificity. The anionic phosphatidylglycerol (PG), and, to a lesser extent, the zwitterionic phosphatidylethanolamine (PE), which both are abundant bacterial lipids, were found to preferentially associate with KcsA as compared to the zwitterionic phosphatidylcholine (PC). These preferred interactions may reflect the differences in affinity of these phospholipids for KcsA in the membrane.  相似文献   

6.
The potassium channel KcsA forms an extremely stable tetramer. Despite this high stability, it has been shown that the membrane-mimicking solvent 2,2,2-trifluoroethanol (TFE) can induce tetramer dissociation [Valiyaveetil, F. I., et al. (2002) Biochemistry 41, 10771-7, and Demmers, J. A. A., et al. (2003) FEBS Lett. 541, 69-77]. Here we have studied the effect of TFE on the structure and oligomeric state of the KcsA tetramer, reconstituted in different lipid systems. It was found that TFE changes the secondary and tertiary structure of KcsA and that it can dissociate the KcsA tetramer in all systems used. The tetramer is stabilized by a lipid bilayer as compared to detergent micelles. The extent of stabilization was found to depend on the nature of the lipids: a strong stabilizing effect of the nonbilayer lipid phosphatidylethanolamine (PE) was observed, but no effect of the charged phoshosphatidylglycerol (PG) as compared to phosphatidylcholine (PC) was found. To understand how lipids stabilize KcsA against TFE-induced tetramer dissociation, we also studied the effect of TFE on the bilayer organization in the various lipid systems, using (31)P and (2)H NMR. The observed lipid dependency was similar as was found for tetramer stabilization: PE increased the bilayer stability as compared to PC, while PG behaved similar to PC. Furthermore, it was found that TFE has a large effect on the acyl chain ordering. The results indicate that TFE inserts primarily in the membrane interface. We suggest that the lipid bilayer stabilizes the KcsA tetramer by the lateral pressure in the acyl chain region and that this stabilizing effect increases when a nonbilayer lipid like PE is present.  相似文献   

7.
The potassium channel KcsA from Streptomyces lividans has been reconstituted into bilayers of phosphatidylcholines and fluorescence spectroscopy has been used to characterize the response of KcsA to changes in bilayer thickness. The Trp residues in KcsA form two bands, one on each side of the membrane. Trp fluorescence emission spectra and the proportion of the Trp fluorescence intensity quenchable by I(-) hardly vary in the lipid chain length range C10 to C24, suggesting efficient hydrophobic matching between KcsA and the lipid bilayer over this range. Measurements of fluorescence quenching for KcsA reconstituted into mixtures of brominated and nonbrominated phospholipids have been analyzed to give binding constants of lipids for KcsA, relative to that for dioleoylphosphatidylcholine (di(C18:1)PC). Relative lipid binding constants increase by only a factor of three with increasing chain length from C10 to C22 with a decrease from C22 to C24. Strongest binding to di(C22:1)PC corresponds to a state in which the side chains of the lipid-exposed Trp residues are likely to be located within the hydrocarbon core of the lipid bilayer. It is suggested that matching of KcsA to thinner bilayers than di(C24:1)PC is achieved by tilting of the transmembrane alpha-helices in KcsA. Measurements of fluorescence quenching of KcsA in bilayers of brominated phospholipids as a function of phospholipid chain length suggest that in the chain length range C14 to C18 the Trp residues move further away from the center of the lipid bilayer with increasing chain length, which can be partly explained by a decrease in helix tilt angle with increasing bilayer thickness. In the chain length range C18 to C24 it is suggested that the Trp residues become more buried within the hydrocarbon core of the bilayer.  相似文献   

8.
The tetrameric prokaryotic potassium channel KcsA is activated by protons acting on the intracellular aspect of the protein and inactivated through conformational changes in the selectivity filter. Inactivation is modulated by a network of interactions within each protomer between the pore helix and residues at the external entrance of the channel. Inactivation is suppressed by the E71A mutation, which perturbs the stability of this network. Here, cell-free protein synthesis followed by protein purification by sodium dodecyl sulfate–polyacrylamide gel electrophoresis was used to produce heterotetramers of KcsA that contain different combinations of wild-type and E71A subunits. Single-channel recordings from these heterotetramers reveal how the network of interactions in individual protomers affects ionic conduction and channel inactivation, suggesting that the latter is a cooperative process.  相似文献   

9.
Mobeen Raja  Elisabeth Vales 《Biochimie》2009,91(11-12):1426-1433
In this study, we compared the channel intrinsic stability of the bacterial K+-channel KcsA and the inwardly rectifying potassium channel (Kir) ROMK1. ROMK1 was successfully cloned, expressed and purified from Saccharomyces cerevisae. By conventional gel electrophoresis, ROMK1 was detected in monomeric form running exclusively at ~45 kDa either in its oxidized or reduced form. By perfluoro-octanoic acid (PFO)-PAGE, the reduced ROMK1 was identified as tetrameric as well as oligomeric complex. However, in its oxidized form ROMK1 was exclusively detected in oligomeric form thus indicating the role of intrinsic cysteine residues and formation of disulfide bonds in stabilizing the oligomeric ROMK1. On the other hand, KcsA purified from E. coli was detected as an extremely stable tetramer both in its oxidized or reduced forms as determined by conventional or PFO-PAGE. Furthermore, in planar lipid bilayer ROMK1 exhibited prominent inward rectification, low single channel conductance and high channel open probability as compared to the KcsA channel which showed typically slight outward rectification and low open probability under similar conditions. Our experiments clearly indicate that KcsA and ROMK1 channels differ with regard to their intrinsic stability which might be related to their structural and functional differences.  相似文献   

10.
Mutation E71A in the bacterial K+-channel KcsA has been shown to abolish the activation-coupled inactivation of KcsA via significant alterations of the peptide backbone in the vicinity of the selectivity filter. In the present study, we examined channel-blocking behavior of KcsA-E71A by tetraethylammonium (TEA) from both the extra- and the intracellular sides. First, we found that E71A is inserted either in cis or trans orientation in a planar lipid bilayer; however, it exhibits only one orientation in proteoliposomes as determined by extravesicular partial chymotrypsin digestion. Second, E71A exhibits a lower extracellular TEA affinity and is more sensitive to intracellular TEA compared to wild-type KcsA, which apparently has >50-fold higher affinity for extracellular TEA and ~2.5-fold lower affinity for intracellular TEA compared to E71A. In additional experiments, we investigated the influence of negatively charged phosphatidylglycerol (PG) on channel-gating properties in phosphatidylcholine lipid bilayers. It was found that high PG content decreases the single-channel conductance and increases the channel open time and open probability. Taken together, our data suggest that the “flipped” conformation of the selectivity filter present in E71A allows weaker extracellular and stronger intracellular TEA binding, whereas higher PG content decreases channel conductivity and stabilizes the channel open “flipped” state via electrostatic interaction in the proximity of the channel pore.  相似文献   

11.
KcsA is a tetrameric K+ channel that is activated by acidic pH. Under open conditions of the helix bundle crossing, the selectivity filter undergoes an equilibrium between permeable and impermeable conformations. Here we report that the population of the permeable conformation (pperm) positively correlates with the tetrameric stability and that the population in reconstituted high density lipoprotein, where KcsA is surrounded by the lipid bilayer, is lower than that in detergent micelles, indicating that dynamic properties of KcsA are different in these two media. Perturbation of the membrane environment by the addition of 1–3% 2,2,2-trifluoroethanol increases pperm and the open probability, revealed by NMR and single-channel recording analyses. These results demonstrate that KcsA inactivation is determined not only by the protein itself but also by the surrounding membrane environments.  相似文献   

12.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

13.
KcsA is a prokaryotic potassium channel formed by the assembly of four identical subunits around a central aqueous pore. Although the high-resolution X-ray structure of the transmembrane portion of KcsA is known [Doyle, D. A., Morais, C. J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69-77], the identification of the molecular determinant(s) involved in promoting subunit tetramerization remains to be determined. Here, C-terminal deletion channel mutants, KcsA Delta125-160 and Delta120-160, as well as 1-125 KcsA obtained from chymotrypsin cleavage of full-length 1-160 KcsA, have been used to evaluate the role of the C-terminal segment on the stability and tetrameric assembly of the channel protein. We found that the lack of the cytoplasmic C-terminal domain of KcsA, and most critically the 120-124 sequence stretch, impairs tetrameric assembly of channel subunits in a heterologous E. coli expression system. Molecular modeling of KcsA predicts that, indeed, such sequence stretch provides intersubunit interaction sites by hydrogen bonding to amino acid residues in N- and C-terminal segments of adjacent subunits. However, once the KcsA tetramer is assembled, its remarkable in vitro stability to detergent or to heat-induced dissociation into subunits is not greatly influenced by whether the entire C-terminal domain continues being part of the protein. Finally and most interestingly, it is observed that, even in the absence of the C-terminal domain involved in tetramerization, reconstitution into membrane lipids promotes in vitro KcsA tetramerization very efficiently, an event which is likely mediated by allowing proper hydrophobic interactions involving intramembrane protein domains.  相似文献   

14.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

15.
We show that the activity of an ion channel is correlated with the phase state of the lipid bilayer hosting the channel. By measuring unitary conductance, dwell times, and open probability of the K+ channel KcsA as a function of temperature in lipid bilayers composed of POPE and POPG in different relative proportions, we obtain that all those properties show a trend inversion when the bilayer is in the transition region between the liquid-disordered and the solid-ordered phase. These data suggest that the physical properties of the lipid bilayer influence ion channel activity likely via a fine-tuning of its conformations. In a more general interpretative framework, we suggest that other parameters such as pH, ionic strength, and the action of amphiphilic drugs can affect the physical behavior of the lipid bilayer in a fashion similar to temperature changes resulting in functional changes of transmembrane proteins.  相似文献   

16.
Discoidal lipoproteins are a novel class of nanoparticles for studying membrane proteins (MPs) in a soluble, native lipid environment, using assays that have not been traditionally applied to transmembrane proteins. Here, we report the successful delivery of an ion channel from these particles, called nanoscale apolipoprotein-bound bilayers (NABBs), to a distinct, continuous lipid bilayer that will allow both ensemble assays, made possible by the soluble NABB platform, and single-molecule assays, to be performed from the same biochemical preparation. We optimized the incorporation and verified the homogeneity of NABBs containing a prototypical potassium channel, KcsA. We also evaluated the transfer of KcsA from the NABBs to lipid bilayers using single-channel electrophysiology and found that the functional properties of the channel remained intact. NABBs containing KcsA were stable, homogeneous, and able to spontaneously deliver the channel to black lipid membranes without measurably affecting the electrical properties of the bilayer. Our results are the first to demonstrate the transfer of a MP from NABBs to a different lipid bilayer without involving vesicle fusion.  相似文献   

17.
Anionic phosphatidic acid (PA) has been shown to stabilize and bind stronger than phosphatidylglycerol via electrostatic and hydrogen bond interaction with the positively charged residues of potassium channel KcsA. However, the effects of these lipids on KcsA folding or secondary structure are not clear. In this study, the secondary structure analyses of KcsA potassium channel was carried out using circular dichroism spectroscopy. It was found that PA interaction leads to increases in α-helical and β-sheet content of KcsA protein. In PA, KcsA α-helical structure was further stabilized by classical membrane-active cosolvent trifluoroethanol followed by reduction in the β-sheet content indicating cooperative transformation from the β-sheet to an α-helical structure. The data further uncover the role of anionic PA in KcsA folding and provide mechanism by which strong hydrogen bonds/electrostatic interaction among PA headgroup and basic residues on lipid binding domains may induce high helical structure thereby altering the protein folding and increasing the stability of tetrameric assembly.  相似文献   

18.
Molecular dynamics (MD) simulations have been used to unmask details of specific interactions of anionic phospholipids with intersubunit binding sites on the surface of the bacterial potassium channel KcsA. Crystallographic data on a diacyl glycerol fragment at this site were used to model phosphatidylethanolamine (PE), or phosphatidylglycerol (PG), or phosphatidic acid (PA) at the intersubunit binding sites. Each of these models of a KcsA-lipid complex was embedded in phosphatidyl choline bilayer and explored in a 20 ns MD simulation. H-bond analysis revealed that in terms of lipid-protein interactions PA > PG > PE and revealed how anionic lipids (PG and PA) bind to a site provided by two key arginine residues (R(64) and R(89)) at the interface between adjacent subunits. A 27 ns simulation was performed in which KcsA (without any lipids initially modeled at the R(64)/R(89) sites) was embedded in a PE/PG bilayer. There was a progressive specific increase over the course of the simulation in the number of H-bonds of PG with KcsA. Furthermore, two specific PG binding events at R(64)/R(89) sites were observed. The phosphate oxygen atoms of bound PG formed H-bonds to the guanidinium group of R(89), whereas the terminal glycerol H-bonded to R(64). Overall, this study suggests that simulations can help identify and characterize sites for specific lipid interactions on a membrane protein surface.  相似文献   

19.
Liu F  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2004,43(12):3679-3687
High-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy were used to study the interaction of a cationic alpha-helical transmembrane peptide, acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)), and members of the homologous series of anionic n-saturated diacyl phosphatidylglycerols (PGs). Analogues of L(24), in which the lysine residues were replaced by 2,3-diaminopropionic acid (L(24)DAP), or in which a leucine residue at each end of the polyleucine sequence was replaced by a tryptophan (WL(22)W), were also studied to investigate the roles of lysine side-chain snorkeling and aromatic side-chain interactions with the interfacial region of phospholipid bilayers. The gel/liquid-crystalline phase transition temperature of the host PG bilayers is altered by these peptides in a hydrophobic mismatch-dependent manner, as previously found with zwitterionic phosphatidylcholine (PC) bilayers. However, all three peptides reduce the phase transition temperature and enthalpy to a greater extent in anionic PG bilayers than in zwitterionic PC bilayers, with WL(22)W having the largest effect. All three peptides form very stable alpha-helices in PG bilayers, but small conformational changes are induced in response to a mismatch between peptide hydrophobic length and gel-state lipid bilayer hydrophobic thickness. Moreover, electrostatic and hydrogen-bonding interactions occur between the terminal lysine residues of L(24) and L(24)DAP and the polar headgroups of PG bilayers. However, such interactions were not observed in PG/WL(22)W bilayers, suggesting that the cation-pi interactions between the tryptophan and lysine residues predominate. These results indicate that the lipid-peptide interactions are affected not only by the hydrophobic mismatch between these peptides and the host lipid bilayer, but also by the tryptophan-modulated electrostatic and hydrogen-bonding interactions between the positively charged lysine residues at the termini of these peptides and the negatively charged polar headgroups of the PG bilayers.  相似文献   

20.
The effects of ionic strength (10-1,000 mM) on the gating of batrachotoxin-activated rat brain sodium channels were studied in neutral and in negatively charged lipid bilayers. In neutral bilayers, increasing the ionic strength of the extracellular solution, shifted the voltage dependence of the open probability (gating curve) of the sodium channel to more positive membrane potentials. On the other hand, increasing the intracellular ionic strength shifted the gating curve to more negative membrane potentials. Ionic strength shifted the voltage dependence of both opening and closing rate constants of the channel in analogous ways to its effects on gating curves. The voltage sensitivities of the rate constants were not affected by ionic strength. The effects of ionic strength on the gating of sodium channels reconstituted in negatively charged bilayers were qualitatively the same as in neutral bilayers. However, important quantitative differences were noticed: in low ionic strength conditions (10-150 mM), the presence of negative charges on the membrane surface induced an extra voltage shift on the gating curve of sodium channels in relation to neutral bilayers. It is concluded that: (a) asymmetric negative surface charge densities in the extracellular (1e-/533A2) and intracellular (1e-/1,231A2) sides of the sodium channel could explain the voltage shifts caused by ionic strength on the gating curve of the channel in neutral bilayers. These surface charges create negative electric fields in both the extracellular and intracellular sides of the channel. Said electric fields interfere with gating charge movements that occur during the opening and closing of sodium channels; (b) the voltage shifts caused by ionic strength on the gating curve of sodium channels can be accounted by voltage shifts in both the opening and closing rate constants; (c) net negative surface charges on the channel's molecule do not affect the intrinsic gating properties of sodium channels but are essential in determining the relative position of the channel's gating curve; (d) provided the ionic strength is below 150 mM, the gating machinery of the sodium channel molecule is able to sense the electric field created by surface changes on the lipid membrane. I propose that during the opening and closing of sodium channels, the gating charges involved in this process are asymmetrically displaced in relation to the plane of the bilayer. Simple electrostatic calculations suggest that gating charge movements are influenced by membrane electrostatic potentials at distances of 48 and 28 A away from the plane of the membrane in the extracellular sides of the channel, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号