首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The skeletal system, while characterized by a hard tissue component, is in fact an extraordinarily dynamic system, with disparate functions ranging from structural support, movement and locomotion and soft-organ protection, to the maintenance of calcium homeostasis. Amongst these functions, it has long been known that mammalian bones house definitive hematopoiesis. In fact, several data demonstrate that the bone microenvironment provides essential regulatory cues to the hematopoietic system. In particular, interactions between the bone-forming cells, or osteoblasts, and the most primitive Hematopoietic Stem Cells (HSC) have recently been defined. This review will focus mainly on the role of osteoblasts as HSC regulatory cells, discussing the signaling mechanisms and molecules currently thought to be involved in their modulation of HSC behavior. We will then review additional cellular components of the HSC niche, including endothelial cells and osteoclasts. Finally, we will discuss the potential clinical implications of our emerging understanding of the complex HSC microenvironment.  相似文献   

2.
3.
Bone morphogenetic proteins: a critical review   总被引:4,自引:0,他引:4  
Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory.  相似文献   

4.
5.
The architecture of trabecular bone is thought to be an optimal mechanical structure in terms of maximal strength and stiffness, and minimal weight. The structural optimality seems to be maintained during growth and adulthood by adaptation of mass and structure through a relationship with actual mechanical usage. The formation and maintenance of the architecture is realized by bone-resorbing osteoclasts and bone-forming osteoblasts, the effector cells of bone metabolism. Hence, a feedback regulatory mechanism between external load and metabolism must exist. We have developed an FEA-based computer-simulation model to study explanations for the workings of such regulatory schemes (1: Huiskes et al. (2000), Nature, 404, 704-706). The model is based on a mechanosensory function of osteocytes, which are thought to react to the local strain-energy-density rate in the mineralized tissue, produced by dynamic external loading on the bone. As an effect of this signal, osteocytes are assumed to transfer an osteoblast recruitment stimulus to the surface, enhancing bone formation. Osteoclasts are assumed to resorb bone that is disused or damaged, in a spatially random manner. This model provides an explanation for the maintenance and adaptation of trabecular bone architecture as an optimal structure. In this article, the mathematical background of the model is specified.  相似文献   

6.
Orai and Stim proteins are the mediators of calcium release-activated calcium signaling and are important in the regulation of bone homeostasis and disease. This includes separate regulatory systems controlling mesenchymal stem cell differentiation to form osteoblasts, which make bone, and differentiation and regulation of osteoclasts, which resorb bone. These systems will be described separately, and their integration and relation to other systems, including Orai and Stim in teeth, will be briefly discussed at the end of this review.  相似文献   

7.
Despite major medical advances, non-union bone fractures and skeletal defects continue to place significant burden on the patient, the clinicians and the healthcare system as a whole. Current bone substitute approaches are still limited in effectiveness and to date no adequate bone substitute material has been developed for routine clinical application. Tissue engineering presents a novel approach to tackling this clinical burden and developing an acceptable solution for the treatment of skeletal defects. Over the past three decades the field has evolved to appreciate the key biological, material and physical parameters influencing the development of a cell-based tissue engineered therapy and to create associated technologies to exploit such parameters. In recent years a number of therapies have started progressing along the pre-clinical pipeline to build a case for regulatory approval and ultimately clinical adoption. However, little emphasis has been given to the translational challenges faced when moving from “bench-to-bedside”. One particular challenge lies in the delivery of functional mechanical stimuli to implanted cell populations to activate and promote osteogenic activities. This review introduces novel bio-magnetic approaches to overcoming this challenge.  相似文献   

8.
骨髓组织病理学评价能够提供关于造血系统和药物相关毒性的重要信息,对于某种损伤的诊断,可以使用很多术语。为了提高评价的一致性,近年来,世界各国药品管理和专业学术机构都非常重视诊断术语的标准化,强调使用描述性的而不是解释性的术语。美国毒性病理学会(STP)推荐的“淋巴器官改良组织病理学评价”方法,其作为能够运用的一种工具来协助毒性病理学工作者辩识评价具有免疫调控作用的药物,具有较高学术价值。文中对骨髓的标本制备,基本形态学特征,改良组织病理学诊断要点以及评价方法进行了归纳和概括性介绍,为相关领域的科研人员提供参考。  相似文献   

9.
Accumulating evidence suggests that microRNAs (miRNAs) contribute to a myriad of kidney diseases. However, the regulatory role of miRNAs on the key molecules implicated in kidney fibrosis remains poorly understood. Bone morphogenetic protein-7 (BMP-7) and its related BMP-6 have recently emerged as key regulators of kidney fibrosis. Using the established unilateral ureteral obstruction (UUO) model of kidney fibrosis as our experimental model, we examined the regulatory role of miRNAs on BMP-7/6 signaling. By analyzing the potential miRNAs that target BMP-7/6 in silica, we identified miR-22 as a potent miRNA targeting BMP-7/6. We found that expression levels of BMP-7/6 were significantly elevated in the kidneys of the miR-22 null mouse. Importantly, mice with targeted deletion of miR-22 exhibited attenuated renal fibrosis in the UUO model. Consistent with these in vivo observations, primary renal fibroblast isolated from miR-22-deficient UUO mice demonstrated a significant increase in BMP-7/6 expression and their downstream targets. This phenotype could be rescued when cells were transfected with miR-22 mimics. Interestingly, we found that miR-22 and BMP-7/6 are in a regulatory feedback circuit, whereby not only miR-22 inhibits BMP-7/6, but miR-22 by itself is induced by BMP-7/6. Finally, we identified two BMP-responsive elements in the proximal region of miR-22 promoter. These findings identify miR-22 as a critical miRNA that contributes to renal fibrosis on the basis of its pivotal role on BMP signaling cascade.  相似文献   

10.
11.
12.
Clinical translation of scaffold-based bone tissue engineering (BTE) therapy still faces many challenges despite intense investigations and advancement over the years. To address these clinical barriers, it is important to analyse the current technical challenges in constructing a clinically relevant scaffold and subsequent clinical issues relating to bone repair. This review highlights the key challenges hampering widespread clinical translation of scaffold-based vascularised BTE, with a focus on the repair of large non-union defects. The main limitations of current scaffolds include the lack of sufficient vascularisation, insufficient mechanical strength as well as issues relating to the osseointegration of the bioresorbable scaffold and bone infection management. Critical insights on the current trends of scaffold technologies and future directions for advancing next-generation BTE scaffolds into the clinical realm are discussed. Considerations concerning regulatory approval and the route towards commercialisation of the scaffolds for widespread clinical utility will also be introduced.  相似文献   

13.
近年来,组织工程技术飞速发展,将种子细胞与支架材料相复合的骨组织工程研究已成为热点,并日趋走向成熟。这一全新的治疗方案将成为解决临床上各种原因造成的骨组织缺损的最有效途径之一。骨组织工程技术包括种子细胞、支架材料和生长因子三个方面。其中,BMSCs因具有多向分化能力、强大的增殖能力以及低免疫源性被认为是最理想的种子细胞,而支架材料的种类有很多种,目前对支架材料的选择也尚有分歧。如何找到理想的支架材料是骨组织工程研究中亟待解决的重要问题。本文就组织工程中与骨髓间充质干细胞(BMSCs)相复合的各类支架材料的研究现状进行综述,这些支架材料的研究将为骨组织工程支架材料的选择提供有效依据。  相似文献   

14.
Auto-reactive cytotoxic T lymphocytes play a key role in the progressive loss or destruction of melanocytes in vitiligo but the mechanism underlying the loss of self-tolerance is unknown. A deregulation of regulatory T-cell biology has recently been suggested. The analysis of the suppressive effects of peripheral T regulatory cells in vitiligo patients revealed a functional defect in seven of 15 cases. This defect was strongly correlated with disease activity. The evaluation of the percentage of peripheral regulatory T lymphocytes did not reveal any intrinsic quantitative defect. Yet, a decrease in the percentage of such cells was noted in patients with progressive forms, suggesting a recruitment of regulatory T cells from the peripheral blood to the site of injury. This was further corroborated by the significant increase of Forkhead box P3 expression in the vitiliginous skin of patients. Our data support the involvement of a functional defect of peripheral regulatory T cells in the pathogenesis of vitiligo and open new possibilities to advance therapeutic approaches.  相似文献   

15.
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40ng/ml in the culture medium, but decreased at 80ng/ml. Under CoCl(2)-induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or anti-angiogenic activities of BMSCs.  相似文献   

16.
17.
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166), is expressed on osteoblasts (OB) and hematopoietic stem cells (HSC) residing in the hematopoietic niche, and may have important regulatory roles in bone formation. Because HSC numbers are reduced 77% in CD166-/- mice, we hypothesized that changes in bone phenotype and consequently the endosteal niche may partially be responsible for this alteration. Therefore, we investigated bone phenotype and OB function in CD166-/- mice. Although osteoclastic measures were not affected by loss of CD166, CD166-/- mice exhibited a modest increase in trabecular bone fraction (42%), and increases in osteoid deposition (72%), OB number (60%), and bone formation rate (152%). Cortical bone geometry was altered in CD166-/- mice resulting in up to 81% and 49% increases in stiffness and ultimate force, respectively. CD166-/- OB displayed elevated alkaline phosphatase (ALP) activity and mineralization, and increased mRNA expression of Fra 1, ALP, and osteocalcin. Overall, CD166-/- mice displayed modestly elevated trabecular bone volume fraction with increased OB numbers and deposition of osteoid, and increased OB differentiation in vitro, possibly suggesting more mature OB are secreting more osteoid. This may explain the decline in HSC number in vivo because immature OB are mainly responsible for hematopoiesis enhancing activity.  相似文献   

18.
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.  相似文献   

19.
Nuclear footprinting revealed a temporal program involving factor binding to the repetitive GC-box DNA elements present in the simian virus 40 regulatory region. This program specified ordered and directional binding to these tandem regulatory sequences in vivo during the late phase of infection. The program was interrupted by the DNA replication inhibitor aphidicolin or by inactivation of the viral replication factor simian virus 40 T antigen, suggesting a link between viral DNA replication and new factor binding. Measurements of DNA accumulation in viruses lacking either the distal or proximal halves of the GC-box region suggested that the region has a dual role in replication control. Overall, the data point to important relationships between DNA replication and factor binding to the GC-box DNA, a multifunctional regulatory region.  相似文献   

20.
T cells and B cells produce large amounts of cytokines which regulate bone resorption and bone formation. These factors play a critical role in the regulation of bone turnover in health and disease. In addition, immune cells of the bone marrow regulate bone homeostasis by cross-talking with bone marrow stromal cells and osteoblastic cells via cell surface molecules. These regulatory mechanisms are particularly relevant for postmenopausal osteoporosis and hyperparathyroidism, two common forms of bone loss caused primarily by an expansion of the osteoclastic pool only partially compensated by a stimulation of bone formation. This article describes the cytokines and immune factors that regulate bone cells, the immune cells relevant to bone, examines the connection between T cells and bone in health and disease, and reviews the evidence in favor of a link between T cells and the mechanism of action of estrogen and PTH in bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号