首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The cyclobutane pyrimidine dimer (CPD) is one of the major classes of cytotoxic and carcinogenic DNA photoproducts induced by UV light. Hydrogen exchange rates of the imino protons were measured for various CPD-containing DNA duplexes to better understand the mechanism for CPD recognition by XPC-hHR23B. The results here revealed that double T·G mismatches in a CPD lesion significantly destabilized six consecutive base pairs compared to other DNA duplexes. This flexibility in a DNA duplex caused at the CPD lesions with double T·G mismatches might be the key factor for damage recognition by XPC-hHR23B.  相似文献   

2.
A thorough study of the acid-base behavior of the four histidines and the other titratable residues of the structured domain of human prion protein (125-228) is presented. By using multi-tautomer electrostatic calculations, average titration curves have been built for all titratable residues, using the whole bundles of NMR structures determined at pH 4.5 and 7.0. According to our results, (1) only histidine residues are likely to be involved in the first steps of the pH-driven conformational transition of prion protein; (2) the pK(a)'s of His140 and His177 are approximately 7.0, whereas those of His155 and His187 are < 5.5. 10-ns long molecular dynamics simulations have been performed on five different models, corresponding to the most significant combinations of histidine protonation states. A critical comparison between the available NMR structures and our computational results (1) confirms that His155 and His187 are the residues whose protonation is involved in the conformational rearrangement of huPrP in mildly acidic condition, and (2) shows how their protonation leads to the destructuration of the C-terminal part of HB and to the loss of the last turn of HA that represent the crucial microscopic steps of the rearrangement.  相似文献   

3.
4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号