首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparan sulfate (HS) plays a crucial role in the fibrosis associated with chronic allograft dysfunction by binding and presenting cytokines and growth factors to their receptors. These interactions critically depend on the distribution of 6-O-sulfated glucosamine residues, which is generated by glucosaminyl-6-O-sulfotransferases (HS6STs) and selectively removed by cell surface HS-6-O-endosulfatases (SULFs). Using human renal allografts we found increased expression of 6-O-sulfated HS domains in tubular epithelial cells during chronic rejection as compared with the controls. Stimulation of renal epithelial cells with TGF-β induced SULF2 expression. To examine the role of 6-O-sulfated HS in the development of fibrosis, we generated stable HS6ST1 and SULF2 overexpressing renal epithelial cells. Compared with mock transfectants, the HS6ST1 transfectants showed significantly increased binding of FGF2 (p = 0.0086) and pERK activation. HS6ST1 transfectants displayed a relative increase in mono-6-O-sulfated disaccharides accompanied by a decrease in iduronic acid 2-O-sulfated disaccharide structures. In contrast, SULF2 transfectants showed significantly reduced FGF2 binding and phosphorylation of ERK. Structural analysis of HS showed about 40% down-regulation in 6-O-sulfation with a parallel increase in iduronic acid mono-2-O-sulfated disaccharides. To assess the relevance of these data in vivo we established a murine model of fibrosis (unilateral ureteric obstruction (UUO)). HS-specific phage display antibodies (HS3A8 and RB4EA12) showed significant increase in 6-O-sulfation in fibrotic kidney compared with the control. These results suggest an important role of 6-O-sulfation in the pathogenesis of fibrosis associated with chronic rejection.  相似文献   

2.
Preterm birth is the leading cause of newborn mortality in the United States and about one third of cases are caused by preterm premature rupture of fetal membranes, a complication that is frequently observed in patients with Ehlers–Danlos Syndrome. Notably, a subtype of Ehlers–Danlos Syndrome is caused by expression of abnormal biglycan and decorin proteoglycans. As compound deficiency of these two small leucine-rich proteoglycans is a model of preterm birth, we investigated the fetal membranes of Bgn−/−; Dcn−/− double-null and single-null mice. Our results showed that biglycan signaling supported fetal membrane remodeling during early gestation in the absence of concomitant changes in TGFβ levels. In late gestation, biglycan signaling acted in a TGFβ-dependent manner to aid in membrane stabilization. In contrast, decorin signaling supported fetal membrane remodeling at early stages of gestation in a TGFβ-dependent manner, and fetal membrane stabilization at later stages of gestation without changes in TGFβ levels. Furthermore, exogenous soluble decorin was capable of rescuing the TGFβ signaling pathway in fetal membrane mesenchymal cells. Collectively, these findings provide novel targets for manipulation of fetal membrane extracellular matrix stability and could represent novel targets for research on preventive strategies for preterm premature rupture of fetal membranes.  相似文献   

3.
Decorin is a small leucine-rich proteoglycan (SLRP) that plays a vital role in many important cellular processes in several tissues including the cornea. A normal constituent of the corneal stroma, decorin is also found in the majority of connective tissues and is related structurally to other small proteoglycans. It interacts with various growth factors such as epidermal growth factor (EGF) and transforming growth factor beta (TGFβ) to regulate processes like collagen fibrillogenesis, extracellular matrix (ECM) compilation, and cell-cycle progression. Studies have linked decorin dysregulation to delayed tissue healing in patients with various diseases including cancer. In the cornea, decorin is involved in the regulation of transparency, a key function for normal vision. It has been reported that mutations in the decorin gene are associated with congenital stromal dystrophy, a disease that leads to corneal opacity and visual abnormalities. Decorin also antagonizes TGFβ in the cornea, a central regulatory cytokine in corneal wound healing. Following corneal injury, increased TGFβ levels induce keratocyte transdifferentiation to myofibroblasts and, subsequently, fibrosis (scarring) in the cornea. We recently reported that decorin overexpression in corneal fibroblasts blocks TGFβ-driven myofibroblast transformation and fibrosis development in the cornea in vitro suggesting that decorin gene therapy can be used for the treatment of corneal scarring in vivo.  相似文献   

4.
The content, types and the fine structures of proteoglycans (PGs) present in human normal nasal cartilage (HNNC) were investigated and compared with those in human scoliotic nasal cartilage (HSNC). Three PG types were identified in both HNNC and HSNC; the large-sized high buoyant density aggrecan, which is the predominant PG population, and the small-sized low buoyant density biglycan and decorin. HSNC contained a significantly higher amount of keratan sulfate (KS)-rich aggrecan (30%) of smaller hydrodynamic size as compared to HNNC. The average molecular sizes (Mrs) of aggecan-derived chondroitin sulfate (CS) chains in both HNNC and HSNC were identical (18 kDa), but they significantly differ in disaccharide composition, since CS isolated from HSNC contained higher proportions of 6-sulfated disaccharides as compared to those from HNNC. Scoliotic tissue contained also higher amounts (67%) of the small PGs, biglycan and decorin as compared to HNNC. It is worth noticing that both normal and scoliotic human nasal cartilage contain also non-glycanated forms of decorin and biglycan. Dermatan sulfate (DS) was the predominant glycosaminoglycan (GAG) present on biglycan and decorin in both tissues. The small PGs-derived CS chains in both normal and scoliotic cartilage had the same Mr (20 kDa), whereas DS chains from scoliotic cartilage were of greater Mr (32 kDa) than those from normal cartilage (24 kDa). Furthermore, scoliotic tissue-derived DS chains contained higher amounts of iduronate (20%) as compared to those of normal cartilage (12%). Disaccharide analysis of small PGs showed that both HNNC and HSNC were rich in 4-sulfated disaccharides and in each case, the small size PGs contained a considerably higher proportion of 4-sulfated disaccharides than the aggrecan of the same tissue. The higher amounts of matrix PGs identified in scoliotic tissue as well as the differences in fine chemical composition of their GAG chains may reflect the modified architecture and functional failure of scoliotic tissue.  相似文献   

5.
6.
Synthetic methods for the preparation of per-O-acetylated, (1→6)-linked disaccharides containing either a d-galactose or a d-glucose residue at the reducing end are described. In these methods, 1,2,3,4-tetra-O-acetyl-6-O-trityl-β-d-glucopyranose was first converted into 1,2,3,4-tetra-O-acetyl-β-d-glucopyranose (1) by rapid treatment with 90% trifluoroacetic acid, followed by rapid isolation designed to minimize O-acyl migration. Disaccharides were formed by glycosylation of 1 or 1,2:3,4-di-O-isopropylidene-d-galactopyranose with per-O-acetylglycosyl halides. Isopropylidene groups in the resulting disaccharide, if present, were removed, and the disaccharide was per-O-acetylated. Per-O-acetylated β-Gal-(1→6)-Glc and β-GlcNAc-(1→6)-Gal, and a mixture of per-O-acetylated α-Gal-(1→6)-Gal and β-Gal-(1→6)-Gal (in the ratio of 3:7) were thus obtained. The per-O-acetylated Gal-(1→6)-Gal disaccharides were converted, by a reaction sequence previously reported, into (2,2-dimethoxyethyl)aminocarbonylmethyl 1-thio-β-d-glycosides, which could then be coupled to proteins via reductive alkylation. For the anomeric mixture of per-O-acetylated Gal-(1→6)-Gal, conversion into the corresponding 1-thioglycoside permitted resolution of the isomers by chromatography on silica gel. When disaccharides, as borate complexes, were chromatographed on a column of a strong, anion-exchange resin, all of the (1→6)-linked disaccharides of neutral sugars tested (including melibiose) were eluted later than analogous disaccharides having other linkages, and also later than any neutral monosaccharides.  相似文献   

7.
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3−/− mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3+/+ cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3−/− epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3−/− cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.  相似文献   

8.
The major ecdysteroids in large worker pupae of the leaf-cutting ant Acromyrmex octospinosus were characterized at the peak ecdysteroid concentration by using high-performance liquid chromatography, enzyme immunoassay, and mass spectrometry. In decreasing amounts, they were determined to be makisterone A, an unidentified C28 ecdysteroid bearing a molecular weight of 494, 20-hydroxyecdysone (ratio of 1 to 6 as compared to makisterone A), and putative but negligible ecdysone. The presence of both C28 and C27 ecdysteroids is discussed in relation to the content of 4-desmethylsterols determined by gas chromatography and mass spectrometry to be ergosta-5,7,24 (28)-trien-3β-ol, ergosterol, ergosta-5,7-dien-3β-ol and ergosta-7,24(28)-dien-3β-ol for the main sterols, and with a small amount of cholesterol.  相似文献   

9.
Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury.  相似文献   

10.
The enzyme arylsulfatase B (N-acetylgalactosamine 4-sulfatase; ASB; ARSB), which removes 4-sulfate groups from the nonreducing end of chondroitin-4-sulfate (C4S;CSA) and dermatan sulfate, has cellular effects, beyond those associated with the lysosomal storage disease mucopolysaccharidosis VI. Previously, reduced ASB activity was reported in cystic fibrosis patients and in malignant human mammary epithelial cell lines in tissue culture compared to normal cells. ASB silencing and overexpression were associated with alterations in syndecan-1 and decorin expression in MCF-7 cells and in IL-8 secretion in human bronchial epithelial cells. In this report, we present the role of ASB in the regulation of the kininogen–bradykinin axis owing to its effect on chondroitin-4-sulfation and the interaction of C4S with kininogen. Silencing or overexpression of ASB in normal rat kidney epithelial cells in tissue culture modified the content of total sulfated glycosaminoglycans (sGAGs), C4S, kininogen, and bradykinin in spent media and cell lysates. Treatment of the cultured cells with chondroitinase ABC also increased the secretion of bradykinin into the spent media and reduced the C4S-associated kininogen. When ASB was overexpressed, the cellular kininogen that associated with C4S declined, suggesting a vital role for chondroitin-4-sulfation in regulating the kininogen–C4S interaction. These findings suggest that ASB, owing to its effect on chondroitin-4-sulfation, may impact on the kininogen–bradykinin axis and, thereby, may influence blood pressure.Because ASB activity is influenced by several ions, including chloride and phosphate, ASB activity may provide a link between salt responsiveness and the bradykinin-associated mechanism of blood pressure regulation.  相似文献   

11.
During cardiac remodeling, cardiac fibroblasts (CF) are influenced by increased levels of interleukin-1α (IL-1α) and transforming growth factor-β1 (TGFβ1). The present study investigated the interaction between these two important cytokines on function of human CF and their differentiation to myofibroblasts (CMF). CF were isolated from human atrial appendage and exposed to IL-1α and/or TGFβ1 (both 0.1 ng/ml). mRNA expression levels of selected genes were determined after 6–24 h by real-time RT-PCR, while protein levels were analyzed at 24–48 h by ELISA or western blot. Activation of canonical signaling pathways (NFκB, Smad3, p38 MAPK) was determined by western blotting. Differentiation to CMF was examined by collagen gel contraction assays. Exposure of CF to IL-1α alone enhanced levels of IL-6, IL-8, matrix metalloproteinase-3 (MMP3) and collagen III (COL3A1), but reduced the CMF markers α-smooth muscle actin (αSMA) and connective tissue growth factor (CTGF/CCN2). By contrast, TGFβ1 alone had minor effects on IL-6, IL-8 and MMP3 levels, but significantly increased levels of the CMF markers αSMA, CTGF, COL1A1 and COL3A1. Co-stimulation with both IL-1α and TGFβ1 increased MMP3 expression synergistically. Furthermore, while TGFβ1 had no effect on IL-1α-induced IL-6 or IL-8 levels, co-stimulation inhibited the TGFβ1-induced increase in αSMA and blocked the gel contraction caused by TGFβ1. Combining IL-1α and TGFβ1 had no apparent effect on their canonical signaling pathways. In conclusion, IL-1α and TGFβ1 act synergistically to stimulate MMP3 expression in CF. Moreover, IL-1α has a dominant inhibitory effect on the phenotypic switch of CF to CMF induced by TGFβ1.  相似文献   

12.
The content, types and the fine structures of proteoglycans (PGs) present in human normal nasal cartilage (HNNC) were investigated and compared with those in human scoliotic nasal cartilage (HSNC). Three PG types were identified in both HNNC and HSNC; the large-sized high buoyant density aggrecan, which is the predominant PG population, and the small-sized low buoyant density biglycan and decorin. HSNC contained a significantly higher amount of keratan sulfate (KS)-rich aggrecan (30%) of smaller hydrodynamic size as compared to HNNC. The average molecular sizes (M(r)s) of aggecan-derived chondroitin sulfate (CS) chains in both HNNC and HSNC were identical (18 kDa), but they significantly differ in disaccharide composition, since CS isolated from HSNC contained higher proportions of 6-sulfated disaccharides as compared to those from HNNC. Scoliotic tissue contained also higher amounts (67%) of the small PGs, biglycan and decorin as compared to HNNC. It is worth noticing that both normal and scoliotic human nasal cartilage contain also non-glycanated forms of decorin and biglycan. Dermatan sulfate (DS) was the predominant glycosaminoglycan (GAG) present on biglycan and decorin in both tissues. The small PGs-derived CS chains in both normal and scoliotic cartilage had the same M(r) (20 kDa), whereas DS chains from scoliotic cartilage were of greater M(r) (32 kDa) than those from normal cartilage (24 kDa). Furthermore, scoliotic tissue-derived DS chains contained higher amounts of iduronate (20%) as compared to those of normal cartilage (12%). Disaccharide analysis of small PGs showed that both HNNC and HSNC were rich in 4-sulfated disaccharides and in each case, the small size PGs contained a considerably higher proportion of 4-sulfated disaccharides than the aggrecan of the same tissue. The higher amounts of matrix PGs identified in scoliotic tissue as well as the differences in fine chemical composition of their GAG chains may reflect the modified architecture and functional failure of scoliotic tissue.  相似文献   

13.
N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation.  相似文献   

14.
The analysis of the oxysterols 7-keto-, 7-α/β-hydroxy-, 5α,6α-epoxy-, 5β,6β-epoxycholesterol and cholestane-3β,5α,6β-triol derived from reactive oxygen species (ROS) is of interest as biomarkers in the field of atherosclerosis. Preanalytical validation is a crucial point to minimize the susceptibility of oxysterols to in vitro autoxidation. The aim of this study was to standardize a preanalytical protocol for ROS-derived oxysterol analysis by liquid chromatography–tandem mass spectrometry in human plasma.  相似文献   

15.
In this study, the amounts and the fine structural characteristics of versican and decorin present in human colon adenocarcinomas (HCC) were investigated and compared with those in human normal colon (HNC). HCC is characterized by significant increase in the amounts of versican and decorin (13- and 8-fold in terms of protein, respectively). These two proteoglycans (PGs) were the predominant in HCC (86% of total uronic acid). In HNC, versican and decorin contained both chondroitin sulfate/dermatan sulfate chains (CS/DS), with DS to be the predominant one (90-93%). The molecular sizes (M(r)s) estimated for DS and CS chains were 25-28 and 21-28 kDa, respectively. In CS/DS chains isolated from both versican and decorin, 4-sulfated disaccharides accounted for 79-86% of total disaccharide units, respectively, whereas lower amounts of 6- and non-sulfated units were also recorded. In contrast, the tumor-associated versican and decorin were of smaller hydrodynamic size with lower glycosaminoglycan (GAG) content per PG molecule as compared with those found in HNC. In HCC, both PGs contained mainly CS chains (up to 86%) and the M(r)s of CS and DS chains were also found to be of smaller size (12 and 16 kDa, respectively). The sulfation patterns of CS/DS chains from both PGs were also significantly different. They were composed mainly of 6-sulfated disaccharides (63-70%), whereas 4-sulfated units accounted for 23-31%. A significant increase in the proportion of non-sulfated disaccharides was also recorded. These findings indicate that the colon adenocarcinoma is characterized by a remarkable increase in the concentration of versican and decorin. Furthermore, these PGs are significantly modified at the post-translational level, i.e. the type, length and the sulfation pattern of their GAG chains. These specific structural alterations of versican and decorin may influence the biology of cancer cells in HCC.  相似文献   

16.
The effect of transforming growth factor-β1 (TGFβ1) on three developmental stages of megakaryocytopoiesis was investigated. Using a murine bone marrow agar culture system, titrated doses of TGFβ1 were added to cultures assaying primitive high proliferative megakaryocyte progenitors, committed megakaryocyte precursors, and nondividing, endoreduplicating megakaryocytes. The growth of high proliferative megakaryocyte colony-forming cells (HPP-CFU-Mk) that require the growth factors interleukins-1, 3 and 6 (IL-1 + IL-3 + IL-6) for colony detection was abrogated by the addition of 1 ng TGFβ1/ml. The sensitivity of committed megakaryocyte progenitors (colony-forming unit-megakaryocyte, CFU-Mk) to TGFβ1 depended on the growth factor combination. TGFβ1 (1 ng/ml) completely inhibited megakaryocyte colony formation from CFU-Mk only in cultures stimulated by low doses of IL-3. TGFβ1 (> 10 ng/ml) could only marginally inhibit megakaryocyte colony forrmation generated in the presence of either high doses of IL-3 or the combination of low dose IL-3 + IL-6. TGFβ1 inhibited both IL-3-dependent and IL-6-dependent megakaryocyte growth but tenfold higher doses of TGFβ1 were required to inhibit growth generated by the combination of IL-3 + IL-6. The data showed that the capacity of TGFβ1 to inhibit distinct differentiation stages of the megakaryocytopoietic lineage depended on the concentration and combination of growth factors involved. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Liver damage induces hepatic stellate cells (HSC) activation, characterised by a fibrogenic, proliferative and migratory phenotype. Activated HSC are mainly regulated by transforming growth factor β 1 (TGFβ1), which increases the production of extracellular matrix proteins (e.g. collagen-I) promoting the progression of hepatic fibrosis. AGAP2 (ArfGAP with GTPase domain, ankyrin repeat and PH domain 2) is a GTPase/GTP-activating protein involved in the actin remodelling system and receptor recycling. In the present work the role of AGAP2 in human HSC in response to TGFβ1 was investigated. LX-2 HSC were transfected with AGAP2 siRNA and treated with TGFβ1. AGAP2 knockdown prevented to some extent the proliferative and migratory TGFβ1-induced capacities of LX-2 cells. An array focused on human fibrosis revealed that AGAP2 knockdown partially prevented TGFβ1-mediated gene expression of the fibrogenic genes ACTA2, COL1A2, EDN1, INHBE, LOX, PDGFB, TGFΒ12, while favored the expression of CXCR4, IL1A, MMP1, MMP3 and MMP9 genes. Furthermore, TGFβ1 induced AGAP2 promoter activation and its protein expression in LX-2. Moreover, AGAP2 protein levels were significantly increased in liver samples from rats with thioacetamide-induced fibrosis. In addition, AGAP2 silencing affected TGFβ1-receptor 2 (TGFR2) trafficking in U2OS cells, blocking its effective recycling to the membrane. AGAP2 silencing in LX-2 cells prevented the TGFβ1-induced increase of collagen-I protein levels, while its overexpression enhanced collagen-I protein expression in the presence or absence of the cytokine. AGAP2 overexpression also increased focal adhesion kinase (FAK) phosphorylated levels in LX-2 cells. FAK and MEK1 inhibitors prevented the increase of collagen-I expression caused by TGFβ1 in LX-2 overexpressing AGAP2. In summary, the present work shows for the first time, that AGAP2 is a potential new target involved in TGFβ1 signalling, contributing to the progression of hepatic fibrosis.  相似文献   

18.
《Cytokine》2014,65(3):652-659
The transforming growth factor-beta 1 (TGFβ1) and NFκB pathways are important regulators of epidermal homeostasis, inflammatory responses and carcinogenesis. Previous studies have shown extensive crosstalk between these pathways that is cell type and context dependent, but this has not been well-characterized in epidermal keratinocytes. Here we show that in primary mouse keratinocytes, TGFβ1 induces NFκB-luciferase reporter activity that is dependent on both NFκB and Smad3. TGFβ1-induced NFκB-luciferase activity was blocked by the IκB inhibitor parthenolide, the IκB super-repressor, a dominant negative TGFβ1-activated kinase 1 (TAK1) and genetic deletion of NFκB1. Coexpression of NFκB p50 or p65 subunits enhanced NFκB-luciferase activity. Similarly, inhibition of the TGFβ1 type I receptor with SB431542 or genetic deletion of Smad3 blocked TGFβ1 induction of NFκB-luciferase. TGFβ1 rapidly induced IKK phosphorylation but did not cause a detectable decrease in cytoplasmic IκB levels or nuclear translocation of NFκB subunits, although EMSA showed rapid NFκB nuclear binding activity that could be blocked by SB431542 treatment. TNFα, a well characterized NFκB target gene was also induced by TGFβ1 and this was blocked in NFκB+/− and −/− keratinocytes and by the IκB super-repressor. To test the effects of the TGFβ1 pathway on a biologically relevant activator of NFκB, we exposed mice and primary keratinocytes in culture to UVB irradiation. In primary keratinocytes UVB caused a detectable increase in levels of Smad2 phosphorylation that was dependent on ALK5, but no significant increase in SBE-dependent gene expression. Inhibition of TGFβ1 signaling in primary keratinocytes with SB431542 or genetic deletion of Tgfb1 or Smad3 suppressed UVB induction of TNFα message. Similarly, UVB induction of TNFα mRNA was blocked in skin of Tgfb1+/− mice. These studies demonstrate that intact TGFβ1 signaling is required for NFκB-dependent gene expression in mouse keratinocytes and skin and suggest that a convergence of these pathways in the nucleus rather than the cytoplasm may be critical for regulation of inflammatory pathways in skin by TGFβ1.  相似文献   

19.
6-O-Acetyl-2,4-diazido-3-O-benzyl-2,4-dideoxy-β-D-glucopyranosyl chloride and 2,6-diazido-3,4-di-O-benzyl-2,6-dideoxy-β-D-glucopyranosyl chloride are two valuable building units suitable for the synthesis of α-linked disaccharides containing 2,4-diamino-2,4-dideoxy- or 2,6-diamino-2,6-dideoxy-D-glucose as nonreducing moieties. The glycoside synthesis is accomplished stereoselectively under mild conditions in the presence of silver perchlorate. The α-(1→3)-linked disaccharides 2,4-diacetamido-2,4-dideoxy-3-O-(2,4-diacetamido-2,4-dideoxy-α-D-glucopyranosyl)-D-glucopyranose and 2-acetamido-2-deoxy-3-O-(2,6-diacetamido-2,6-dideoxy-α-D-glucopyranosyl)-D-glucopyranose have been prepared.  相似文献   

20.
Keratan sulfate (KS) comprises repeating disaccharides of galactose (Gal) and N-acetylglucosamine (GlcNAc). Residues of Gal and GlcNAc in KS are potentially modified with sulfate at their C-6 positions. The 5D4 monoclonal antibody recognizes KS structures containing Gal and GlcNAc, both 6-sulfated, and has been used most extensively to evaluate KS expression in mammalian brains. We previously showed that GlcNAc6ST1 is an enzyme responsible for the synthesis of the 5D4 epitope in developing brain and in the adult brain, where it is induced after injury. It has been unclear which sulfotransferase is responsible for Gal-6-sulfation within the 5D4 KS epitope in developing brains. We produced mice deficient in KSGal6ST, a Gal-6-sulfotransferase. Western blotting and immunoprecipitation revealed that all 5D4-immunoreactivity to proteins, including phosphacan, were abolished in KSGal6ST-deficient postnatal brains. Likewise, the 5D4 epitope, expressed primarily in the cortical marginal zone and subplate and dorsal thalamus, was eliminated in KSGal6ST-deficient mice. Disaccharide analysis showed the loss of Gal-6-sulfate in KS of the KSGal6ST-deficient brains. Transfection studies revealed that GlcNAc6ST1 and KSGal6ST cooperated in the expression of the 5D4 KS epitope in HeLa cells. These results indicate that KSGal6ST is essential for C-6 sulfation of Gal within KS in early postnatal brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号