首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

2.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

3.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km = 0.25 μM, Vmax = 24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

4.
We have studied the activities of Ca2+-stimulated ATPase in rat heart sarcolemma upon modulating the redox state of membrane thiol groups with dithiothreitol (DTT). The suitability of alamethicin to unmask the latent activity of this enzyme was also investigated. The Ca2+-stimulated ATPase in sarcolemma exhibited two activation sites — one with low affinity (Km = 0.70 ± 0.2 mM; Vmax = 10.0 ± 2.2 mol Pi/mg/h) and the other with high affinity (Km = 0.16 ± 0.7 mM; Vmax = 4.6 ± 0.8 mol Pi/mg/h) for Mg2+ATP. Alamethicin at a ratio of 1:1 with the sarcolemmal protein caused a 3-fold activation of Ca2+-stimulated ATPase without affecting its sensitivity to Ca2+ or Mg2+ATP. Treatment of sarcolemma with deoxycholate or sodium dodecyl sulfate resulted in a total loss of the enzyme activity; high concentrations of alamethicin also showed a detergent-like action on the sarcolemmal vesicles. DTT at 5–10 mM concentrations caused a 4–5 fold activation of Ca2+-stimulated ATPase in sarcolemma and this effect was observed to be dependent on the concentration of Mg2+ATP. DTT increased the affinity of the enzyme to Mg2+ATP at the high affinity site and enhanced the Vmax at the low affinity site in addition to increasing the sensitivity of Ca2+-stimulated ATPase to Ca2+. DTT protected the Ca2+-stimulated ATPase against deterioration by detergents and restored the enzyme activity after treatment with N-ethylmaleimide. The mechanism of action of DTT on Ca2+-stimulated ATPase may involve the reduction of essential thiols at the active site of the enzyme or its interaction with specific DTT-dependent inhibitor protein. No changes in the sensitivity of sarcolemmal Ca2+-stimulated ATPase to orthovanadate was evident in the absence or presence of DTT and alamethicin. The results suggest the use of both DTT and alamethicin for the determination of Ca2+-stimulated ATPase activity in sarcolemmal preparations.  相似文献   

5.
The uncoupling of Ca2+ transport from ATP hydrolysis in the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by trypsin digestion was re-investigated by comparing ATPase activity with the ability of the enzyme to occlude Eu3+ (a transport parameter) after various tryptic digests. With this method, re-examination of uncoupling by tryptic digest of the ATPase revealed that TD2 cleavage (Arg-198) had no effect on either occlusion or ATPase activity. Digestion past TD2 in the presence of 5 mM Co2+ and at 25°C resulted in the loss of about 70% of the ATPase activity, but no loss of occlusion. Digestion past TD2 in the presence of 5 mM Ca2+, 3 mM ATP, and at 25°C resulted in a partially uncoupled enzyme complex which retained about 50% of the ATPase activity, but completely lost the ability to occlude Eu3+. Digest past TD2 in the presence of 5 mM Ca2+ and 3 mM AMP-PNP. (a non-hydrolyzable ATP analog) at 25°C resulted in no loss of occlusion, thus revealing the absolute requirement of ATP during the digest to eliminate occlusion. From these findings we conclude that uncoupling of Ca2+ transport from ATPase activity is possible by tryptic digestion of the (Ca2+ + Mg2+)-ATPase. Interestingly, only after phosphorylation of the enzyme do the susceptible bond(s) which lead to the loss of occlusion become exposed to trypsin.  相似文献   

6.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

7.
The ability of the Ca2+-Mg2+ ATPase pump of skeletal SR to produce and maintain a Ca2+ gradient was studied as a function of the ATP/ADP/Pi ratio. The internal free Ca2+ concentration [Ca2+]i was monitored by changes in fluorescence of CTC. Increasing ADP concentrations in the medium reduce the maximal [Ca2+]i concentration achieved. The inclusion or the omission of 4×10–4 M Pi or doubling the absolute ATP and ADP concentrations at a constant ATP/ADP ratio does not affect the level obtained. The level depends primarily on the ATP/ADP ratio. The [Ca2+] concentration shows a 1.5 power dependence on the ATP/ADP ratio. Further, [Ca2+]i achieved at steady state does not depend on whether the pump had been working in the forward or the reverse direction prior to testing. Analysis shows that the levels of Ca2+ achieved are much lower than the levels predicted thermodynamically under the assumption of ideal coupling between Ca2+ transport and ATP hydrolysis with a stoichiometry of 2:1. Under this condition the osmotic energy of the [Ca2+]i/[Ca2+]o ratio was shown to be 48% as large as the free energy of hydrolysis of ATP, giving an overall thermodynamic efficiency of 48%. Analysis shows that maximal steady-state uptake is determined by the balance between the rates of uptake by the pump and rates of leak processes (intrinsic or extrinsic to the pump). Comparison with other studies shows that the [Ca2+]i achieved results in trans-inhibition of the pump by tying up the Ca2+ translocator in the inwardly oriented phosphorylated form. The absence of an effect of Pi can be taken as evidence that the dissociation of Ca2+ from the inwardly oriented translocator on the phosphoylated enzyme must precede the dephosphorylation of the enzyme.  相似文献   

8.
The ATP dependent Ca2+ uptake of platelet vesicles was inhibited by the two hydrophobic drugs trifluoperazine (TFP) and propranolol (PROP). Inhibition was significantly lowered when Pi was used instead of oxalate as a precipitant agent. When the ATPase ligands substrate (Mg2+ and Pi) were absent of the efflux medium, a slow release of Ca2+ which did not couple with ATP synthesis (passive Ca2+ efflux) was observed. Both, TFP and PROP enhanced the passive Ca2+ efflux. This enhanced efflux was partially inhibited only when Mg2+ and Pi were added together to the efflux reaction media, but it was not affected by spermidine, ruthenium red or thapsigargin (TG). The Ca2+ ionophores A23187 and ionomycin, also enhanced passive Ca2+ efflux. However, in this case, Ca2+ efflux was inhibited just by inclusion of Mg2+ to the medium. Ca2+ efflux promoted by Triton X-100 was not affected by either Mg2+ or Pi, included together or separately into the efflux medium. The ATP Pi measured in the presence of Triton X-100 and millimolar Ca2+ concentrations was inhibited by both TFP and PROP, but not by Ca2+ ionophores up to 4 M. The data suggest that the observed enhancement of passive Ca2+ efflux promoted by TFP and PROP could be attributed to a direct effect of these drugs over the platelet Ca2+ pump isoforms (Sarco Endoplasmic Reticulum Calcium ATPase, SERCA2b and SERCA3) themselves, as it was reported for the sarcoplasmic reticulum Ca2+ ATPase (SERCA1).  相似文献   

9.
The sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca2+ transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca2+ channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (ΔHcal) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg2+ or ruthenium red, conditions that close the ryanodine Ca2+ channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the ΔHcal values of ATP hydrolysis increased significantly. Neither Mg2+ nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the ΔHcal of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca2+ channel is opened or closed.  相似文献   

10.
Summary Human erythrocyte Ca2+-translocating ATPase was solubilized from calmodulin-depleted membranes using the detergent Triton X-100, and subsequently purified by calmodulin-affinity chromatography. The purified enzyme was reconstituted in artificial phospholipid vesicles using a cholate-dialysis method and various phospholipids. The reconstituted enzyme was able to translocate Ca2+ inside the vesicles, both in the absence and in the presence of the Ca2+-chelating agent, oxalate, inside the vesicles. The tightness of coupling between ATP hydrolysis and cation translocation was investigated by the use of different ionophoretic compounds. The efficiency of Ca2+ translocation was measured by the ability of the ionophores to stimulate ATP hydrolytic activity of the reconstituted enzyme. It was found that the maximum stimulation of the ATP hydrolytic activity was induced by the electroneutral Ca2+/2H+ ionophore A23187 (9 to 10-fold). A Ca2+ ionophore unable to translocate H+, CYCLEX-2E, was less efficient in stimulating the activity of the reconstituted enzyme (two- to threefold). However, the combined addition of CYCLEX-2E plus protonophores further increased the ATP hydrolytic activity (around fourfold), whereas, the protonophores did not further stimulate ATP hydrolysis in the presence of A23187. Furthermore, in the absence of Ca2+ ionophore, the electroneutral K+(Na+)/H+ ionophoretic exchanger, nigericin, or the electroneutral Na+(K+)/H+ ionophoretic exchanger, monensin, stimulated the rate of ATP hydrolysis in the reconstituted enzyme two- or threefold, respectively. These results suggest that the Ca2+-ATPase not only translocates Ca2+ but also H+ in the opposite direction.  相似文献   

11.
Summary Proteolytic digestion of sarcoplasmic reticulum vesicles with trypsin has been used as a structural modification with which to examine the interaction between the ATP hydrolysis site and calcium transport sites of the (Ca2++Mg2+)-ATPase. The kinetics of trypsin fragmentation were examined and the time course of fragment production compared with ATP hydrolytic and calcium uptake activities of the digested vesicles. The initial cleavage (TD 1) of the native ATPase to A and B peptides has no effect on the functional integrity of the enzyme, hydrolytic and transport activities remaining at the levels of the undigested control. Concomitant with the second tryptic cleavage (TD 2) of the A peptide to A1 and A2 fragments, calcium transport is inhibited. Kinetic analysis demonstrates that the rate constant for inhibition of calcium uptake is correlated with the rate constant of a fragment disappearance. Both Ca2+-dependent and total ATPase activities are unaffected by this second cleavage. Passive loading of vesicles with calcium and subsequent efflux measurements show that transport inhibition is not due to increased permeability of the membrane to calcium even at substantial extents of digestion. Steady-state levels of acidstable phosphoenzyme are unaffected by either TD 1 or TD 2, indicating that uncoupling of the hydrolytic and transport functions does not increase the turnover rate of the enzyme and that TD 2 does not change the essential characteristics of the ATP hydrolysis site. Sarcoplasmic reticulum (SR) vesicles were examined for the presence of tightly bound nucleotides and are shown to contain 2.8–3.0 nmol ATP and 2.6–2.7 nmol ADP per mg SR protein. The ADP content of SR remains essentially unchanged with TD 1 cleavage of the ATPase enzyme to A and B peptides, but declines upon TD 2 in parallel with the digestion of the A fragment and the loss of calcium uptake activity of the vesicles. The ATP content is essentially constant throughout the course of trypsin digestion. The results are discussed in terms of current models of the SR calcium pump and the molecular mechanism of energy transduction.  相似文献   

12.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

13.
The thermodynamic efficiency of the calmodulin-activated form of the Ca2+-pumping ATPase of the bovine cardiac sarcolemma (SL) was evaluated in sealed vesicles under reversible conditions. The free internal Ca2+ concentration ([Ca2+]i) established in the SL vesicle lumen by action of the ATPase was determined as a function of the [ATP]/([ADP][Pi]) ratio for the following experimental conditions: 250mM sucrose, 100mM KCI, 0.1mM Mg2+, 25mM HEPES, 25mM Tris, pH 7.40, at 37°C, [Ca2+]o=50nM (1mM Ca/EGTA buffer), 0.75mM Mg-ATP, 0.1mM Pi, variable [ADP]. Under these conditions, with the pump working near itsK m of 64nM, the [Ca2+]i achieved was 18mM, decreasing with increasing [ADP] for [ADP] 0.84mM. A plot of the square of the [Ca2+]i/[Ca2+]o ratio against [ATP]/([ADP][Pi]) gave a straight line with a slope of 1.5×107M. This was in agreement, within the experimental error, with the equilibrium constant for ATP hydrolysis under these conditions (1.09×107M). These results demonstrate (1) tight coupling between Ca2+ transport and ATP hydrolysis with a stoichiometry of 2 Ca2+ moved per ATP split and (2) a low degree of passive leakage. Analysis at low [ADP] (<0.83mM) showed the unexpected result that ADP increases the rate of theforward reaction of the pump. The maximal effect on the initial rate is a 96±5% increase, with an EC50 of approximately 0.4mM (ADP). Similar but lesser stimulation was observed with CDP. The implications of the above results for the energetics of the pump and for its physiological function in the beating heart are discussed.  相似文献   

14.
15.
Ca2+ transport by sarcoplasmic reticulum vesicles was examined by incubating sarcoplasmic reticulum vesicles (0.15 mg/ml) at 37°C in, either normal medium that contained 0.15 M sucrose, 0.1 M KCl, 60 μM CaCl2, 2.5 mM ATP and 30 mM Tes at pH 6.8, or a modified medium for elimination of ADP formed from ATP hydrolysis by including, in addition, 3.6 mM phosphocreatine and 33 U/ml of creatine phosphokinase. In normal medium, Ca2+ uptake of sarcoplasmic reticulum vesicles reached a plateau of about 100 nmol/mg. In modified medium, after this phase of Ca2+ uptake, a second phase of Ca2+ accumulation was initiated and reached a plateau of about 300 nmol/mg. The second phase of Ca2+ accumulation was accompanied by phosphate uptake and could be inhibited by ADP. Since, under these experimental conditions, there was no significant difference of the rates of ATP hydrolysis in normal medium and modified medium, extra Ca2+ uptake in modified medium but not in normal medium could not be explained by different phosphate accumulation in the two media. Unidirectional Ca2+ influx of sarcoplasmic reticulum near steady state of Ca2+ uptake was measured by pulse labeling with 45Ca2+. The Ca2+ efflux rate was then determined by subtracting the net uptake from the influx rate. At the first plateau of Ca2+ uptake in normal medium, Ca2+ influx was balanced by Ca2+ efflux with an exchange rate of 240 nmol/mg per min. This exchange rate was maintained relatively constant at the plateau phase. In modified medium, the Ca2+ exchange rate at the first plateau of Ca2+ uptake was about half of that in normal medium. When the second phase of Ca2+ uptake was initiated, both the influx and efflux rates started to increase and reached a similar exchange rate as observed in normal medium. Also, during the second phase of Ca2+ uptake, the difference between the influx and efflux rates continued to increase until the second plateau phase was approached. In conditions where the formation of ADP and inorganic phosphate was minimized by using a low concentration of sarcoplasmic (7.5 μg/ml) and/or using acetyl phosphate instead of ATP, the second phase of Ca2+ uptake was also observed. These data suggest that the Ca2+ load attained by sarcoplasmic reticulum vesicles during active transport is modulated by ADP accumulated from ATP hydrolysis. ADP probably exerts its effect by facilitating Ca2+ efflux, which subsequently stimulates Ca2+ exchange.  相似文献   

16.
The plasma membrane Ca2+ ATPase in erythrocytes is vital for the maintenance of intracellular Ca2+ levels. Since the cytoplasmic Ca2+ concentration is elevated in older erythrocytes, the properties of the Ca2+ transport ATPase were examined during cell aging using inside-out vesicles (IOVs) prepared from density-separated, young (less dense, Ey) and old (more dense, Eo) rat and human erythrocytes. The transport of Ca2+ and the coupled hydrolysis of ATP were measured using radiolabeled substrates. The calmodulin-independent Ca2+ transport activity (Ey, 38.8 vs. Eo, 23.3 nmols/min/mg IOV protein) and the Ca2+ dependent ATP phosphohydrolase activity (Ey, 53.5 vs. Eo, 48.8 nmols/min/mg protein) were greater in IOVs prepared from younger (less dense) rat erythrocytes. The calmodulin-independent Ca2+ transport activity in IOVs from human erythrocytes was 12.9 nmols/min/mg IOV protein for Ey and 10.7 nmols/min/mg IOV protein for Eo. Inside-out vesicles from older (more dense) cells exhibited a lower pumping efficiency as determined by the calculated stoichiometry, molecule of Ca2+ transported per molecule of ATP hydrolyzed (rat: Ey, 0.74 vs. Eo, 0.49; human: Ey, 1.22 vs. Eo, 0.77). The enzymatic activity of rat and human Ey IOVs was labile. The Ca2+ transport activity in Ey but not Eo IOVs rapidly declined during cold storage (4°C). The decrease in Ca2+ transport activity during aging may accentuate the age-related decline in several erythrocytic properties.Abbreviations IOV Inside-Out Vesicles - Ey Erythrocytes enriched with young (less dense) cells - Eo Erythrocytes enriched with old (more dense) cells - ACEase Acetylcholinesterase  相似文献   

17.
The effects of ethanol in vitro on calmodulin-dependent Ca2+-activated ATPase (CaM–Ca2+-ATPase) activity were studied in synaptic plasma membranes (SPM) prepared from the brain of normal and chronically ethanol-treated rats. In SPM from normal animals, ethanol at 50–200 mM inhibited the Ca2+-ATPase activity. Lineweaver-Burk analysis indicates that the inhibition was the result of a decreased affinity of the enzyme for calmodulin, whereas the maximum activity of the enzyme was not changed. Arrhenius analysis indicates that the enzyme activity was influenced by lipid transition of the membranes, and ethanol in vitro resulted in a shift of the transition temperature toward a lower value. From animals receiving chronic ethanol treatment (3 weeks), the SPM were resistant to the inhibitory effect of ethanol on the enzyme activity. The resistance to ethanol inhibition was correlated with a higher enzyme affinity for calmodulin and a higher transition temperature, as compared with normal SPM. Since the calmodulin-dependent Ca2+-ATPase in synaptic plasma membranes is believed to be the Ca2+ pump controlling free Ca2+ levels in synaptic terminals, its inhibition by ethanol could therefore lead to altered synaptic activity.Abbreviations used ATPase adenosine triphosphatase - CaM calmodulin - CaM–Ca2+-ATPase calmodulin-dependent Ca2+-activated ATPase - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - EtOH ethanol - Hepes N—2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - SPM synaptic plasma membranes - TFP trifluoperazine - Tris tris(hydroxymethyl)aminomethane - Km Michaelis constant - Td transition temperature - Vmax maximum velocity  相似文献   

18.
Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

19.
Summary In reconstituted rabbit skeletal muscle (Ca2+ + Mg2+)-ATPase proteoliposomes, Ca2+-uptake is decreased by more than 90% with T2 cleavage (Arg-198). However, no difference in the ATP dependence of hydrolysis activity is seen between SR and trypsin-treated SR. A large decrease in E-P formation and hydrolysis activity of the enzyme appear only at T3 cleavage, which represents the cleavage of A1 fragment to A1a + A1b forms. The disappearance of hydrolysis activity due to digestion is prior to the disappearance of E-P formation. No significant difference is found in the passive Ca2+ efflux between control SR and tryptically digested SR in the absence of Mg+ ruthenium red or in the presence of ATP. However, the passive Ca2+ efflux rate for tryptically digested SR is much larger than control SR in the presence of Mg2+ + ruthenium red. These results show that the Ca2+ channel cannot be closed after trypsin digestion of SR membranes by the presence of the Ca2+ channel inhibitors, Mg2+ and ruthenium red. In the reconstituted ATPase proteoliposomes, the Ca2+ efflux rates are the same regardless of digestion (T2); also, efflux is not affected by the presence or absence of Mg2+ + ruthenium red. These results indicate that T2 cleavage causes uncoupling of the Ca2+-pump from ATP hydrolytic activity.A theoretical model is developed in order to fit the extent of tryptic digestion of the A fragment of the (Ca2+ + Mg2+)-ATPase polypeptide with the loss of Ca2+-transport. Fits of the theoretical equations to the data are consistent with that Ca2+-transport system appears to require a dimer of the polypeptide (Ca2+ + Mg2+)-ATPase.  相似文献   

20.
(Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum has been reconstituted with dipalmitoylphosphatidylcholine, and the activating effect of ATP and Ca2+ on this enzyme has been studied at different temperatures. It has been found that two kinetic forms of the enzyme are interconverted at about 31°C, and this is possibly related to a phase change in the phospholipid which is more directly associated with the protein. Above 31°C the enzyme is less dependent on ATP activation at high ATP concentrations but shows positive cooperativity for Ca2+ activation. On the other hand, below 31°C, the reconstituted enzyme is more dependent on ATP for activation at high ATP concentrations than the purified ATPase and does not show cooperativity for Ca2+ activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号