首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared with C57BL/6J-A y /a, KK-A y /a mice have yellow fur that is markedly darker. Furthermore, there is a considerable variation in the tone of color with a continuous range in F2 progeny produced from C57BL/6J females and KK-A y /a males. The aims of this study are to reveal the phenotypic differences between the two A y congenic strains and to elucidate the genetic factors responsible for the sooty yellow pigmentation in the KK background. On the basis of a chemical analysis, the sootiness in KK-A y /a was the result of increased eumelanin (PTCA) and decreased pheomelanin (AHP). A statistically significant QTL was identified on Chromosome (Chr) 15, responsible for the AHP content. No significant loci responsible for PTCA were identified. On the other hand, on the basis of an optical analysis for color difference and overall sootiness, significant evidence of linkage was identified on the proximal part of Chr 15, in the region similar to AHP QTL. The overall sootiness is thus controlled solely by the locus on Chr 15 in F2 progeny; however, the KK allele at this locus significantly increased the AHP content. Received: 8 September 1999 / Accepted: 18 April 2000  相似文献   

2.
3.
AimsWe investigated the effects of riboflavin (vitamin B2) on the kinetics of zymosan-induced peritonitis in three strains of mice.Main methodsPeritonitis was induced in males of C57BL/6J, BALB/c and CBA mice by intraperitoneal injection of zymosan (40 mg/kg) or zymosan supplemented with riboflavin (50 mg/kg). During the first 45 min of inflammation the pain symptoms were scored. At the selected time points (4, 6, 8, 10, 24, and 30 h) the mice were sacrificed and peritoneal exudates were retrieved. Leukocytes, among them polymorphonuclear cells (PMNs) and macrophages (Mac3+ cells) were counted. Levels of inducible nitric oxide synthase (iNOS) were measured in cell pellets while supernatants were used for measurements of nitric oxide, cytokine/chemokines (IL-6, IL-10, MCP-1, IFNγ, TNF-α, and IL-12p70), and matrix metalloproteinase-9 (MMP-9).Key findingA riboflavin ip injection induced pain symptoms itself, but reduced zymosan-induced pain in C57BL/6J and CBA strains of mice when coinjected with zymosan. In comparison with the mice injected with zymosan only, riboflavin coinjection prolonged inflammation in C57BL/6J mice due to prolonged macrophage accumulation; inhibited peritoneal leukocytes (PTL) accumulation in BALB/c due to inhibited influx of macrophages and PMNs; and inhibited PTL accumulation in CBA mice due to delayed PMN influx. These effects corresponded with the delayed (C57BL/6J) or inhibited (BALB/c and CBA) expression of iNOS in PTL lysates, and with the prolonged (C57BL/6) or inhibited (BALB/c) intraperitoneal accumulation of MMP-9. Moreover, cytokine accumulation was affected in a strain-specific way.SignificanceRiboflavin is antinociceptive during yeast-induced peritonitis, but its anti-inflammatory effects are strain-specific.  相似文献   

4.
Because of ectopic overproduction of agouti protein, yellow alleles (Ay and Avy) of the murine agouti gene may secondarily modulate the synthesis, maturation (i.e., acetylation), and/or tissue deployment of α-Melanocyte Stimulating Hormone (MSH). We used HPLC to test the hypothesis that Ay/a mice exhibit altered concentrations of desacetyl-, monoacetyl-, and diacetyl-α-MSH in pituitaries, sera, and telogen hair bulbs when compared to black (a/a) mice. We also used RIA to measure total MSH in those same tissues of Ay/a, a/a, and white-bellied agouti (AwJ/AwJ) mice (Strain C57BL/6J). We found no evidence that Ay/a mice possessed an imbalance of des-, mono-, and diacetylated α-MSH species. However, radioimmunoassay (RIA) analyses of total MSH suggest that wild-type agouti mice (AwJ/AwJ) exhibited significantly decreased (P < 0.05) tissue levels of total α-MSH in pituitaries, sera, and regenerating hair bulbs when compared to those of mutant Ay/a and a/a mice.  相似文献   

5.
Obesity-resistant (A/J) and obesity-prone (C57BL/6J) mice were weaned onto low-fat (LF) or high-fat (HF) diets and studied after 2, 10, and 16 wk. Despite consuming the same amount of food, A/J mice on the HF diet deposited less carcass lipid and gained less weight than C57BL/6J mice over the course of the study. Leptin mRNA was increased in white adipose tissue (WAT) in both strains on the HF diet but to significantly higher levels in A/J compared with C57BL/6J mice. Uncoupling protein 1 (UCP1) and UCP2 mRNA were induced by the HF diet in brown adipose tissue (BAT) and WAT of A/J mice, respectively, but not in C57BL/6J mice. UCP1 mRNA was also significantly higher in retroperitoneal WAT of A/J compared with C57BL/6J mice. The ability of A/J mice to resist diet-induced obesity is associated with a strain-specific increase in leptin, UCP1, and UCP2 expression in adipose tissue. The findings indicate that the HF diet does not compromise leptin-dependent regulation of adipocyte gene expression in A/J mice and suggest that maintenance of leptin responsiveness confers resistance to diet-induced obesity.  相似文献   

6.
7.
We previously reported the unexpected finding that 4 wk of exposure to intermittent hypoxia (IH), which simulates the hypoxic stress of obstructive sleep apnea, improved LV cardiac function in healthy, lean C57BL/6J mice. The purpose of the present study was to assess the impact of 4 wk of IH on cardiac function in a transgenic murine model that exhibits a natural history of heart failure. We hypothesized that IH exposure would exacerbate cardiac decompensation in heart failure. Adult male FVB (wild type) and transgenic mice with cardiac overexpression of tumor necrosis factor α (TNF-αTG) at 10-12 wk of age were exposed to 4 wk of IH (nadir inspired oxygen 5-6% at 60 cycles/h for 12 h during light period) or intermittent air (IA) as control. Cardiac function was assessed by echocardiography and pressure-volume loop analyses, and mRNA and protein expression were performed on ventricular homogenates. TNF-αTG mice exposed to IA exhibited impaired LV contractility and increased LV dilation associated with markedly elevated cardiac expression of atrial natriuretic peptide and brain natriuretic peptide compared with wild-type mice. When wild-type FVB mice were exposed to IH, they exhibited increases in arterial pressure and dP/dt(max), consistent with our previous report in C57BL/6J mice. Surprisingly, we found that TNF-αTG mice exposed to IH showed a reduction in end-diastolic volume (38.7 ± 3.8 to 22.2 ± 2.1 ul; P < 0.01) and an increase in ejection fraction (29.4 ± 2.5 to 41.9 ± 3.1%; P < 0.05). In contrast to our previous study in C56Bl/6J mice, neither FVB nor TNF-αTG mice exhibited an upregulation in β-adrenergic expression or cAMP in response to IH exposure. We conclude that 4 wk of exposure to IH in mice induces adaptive responses that improve cardiac function in not only healthy animals but also in animals with underlying heart failure.  相似文献   

8.
Objective: Effects of ectopic expression of the agouti signaling protein were studied on responses to diet restriction and exercise in C57BL/6J (B6) mice and obese B6 mice congenic for the yellow agouti mutation [B6.Cg‐Ay (Ay)]. Research Methods and Procedures: Adult male Ay mice were either kept sedentary or exercised on a running wheel and fed ad libitum or diet restricted until weight matched to ad libitum‐fed B6 control mice. Body composition, plasma lipids, leptin, and adiponectin were measured. mRNA levels for leptin, adiponectin, lipoprotein lipase, and pyruvate dehydrogenase kinase 4 were measured in a visceral (epididymal) and a subcutaneous (femoral) fat depot by real‐time polymerase chain reaction. Results: Correlations among traits exhibited one of three patterns: similar lines for B6 and Ay mice, different slopes for B6 and Ay mice, and/or different intercepts for B6 and Ay mice. Correlations involving plasma leptin, mesenteric and epididymal adipose weights, or low‐density lipoprotein‐cholesterol were most likely to have different slopes and/or intercepts in B6 and Ay mice. mRNA levels for leptin, Acrp30, pyruvate dehydrogenase kinase 4, and lipoprotein lipase in epididymal adipose tissue were not correlated with corresponding levels in femoral adipose tissue. Discussion: The agouti protein interferes with leptin signaling at melanocortin receptors in the hypothalamus of Ay mice. Our results are consistent with the hypothesis that the melanocortin portion of the leptin‐signaling pathway mediates effects primarily on certain fat depots and on some, but not all, components of cholesterol homeostasis.  相似文献   

9.
Energy is stored predominately as lipid in white adipose tissue (WAT) in distinct anatomical locations, with each site exerting different effects on key biological processes, including glucose homeostasis. To determine the relative contributions of subcutaneous and visceral WAT on glucose homeostasis, comparable amounts of adipose tissue from abdominal subcutaneous inguinal WAT (IWAT), intra-abdominal retroperitoneal WAT (RWAT), male gonadal epididymal WAT (EWAT), or female gonadal parametrial WAT (PWAT) were removed. Gonadal fat removal in both male and female chow-fed lean mice resulted in lowered glucose levels across glucose tolerance tests. Female lean C57BL/6J mice as well as male and female lean FVBN mice significantly improved glucose tolerance, indicated by decreased areas under glucose clearance curves. For the C57BL/6J mice maintained on a high-fat butter-based diet, glucose homeostasis was improved only in female mice with PWAT removal. Removal of IWAT or RWAT did not affect glucose tolerance in either dietary condition. We conclude that WAT contribution to glucose homeostasis is depot specific, with male gonadal EWAT contributing to glucose homeostasis in the lean state, whereas female gonadal PWAT contributes to glucose homeostasis in both lean and obese mice. These data illustrate both critical differences among various WAT depots and how they influence glucose homeostasis and highlight important differences between males and females in glucose regulation.  相似文献   

10.
11.
In order to investigate the differential ALCAM, ICAM-1 and VCAM-1 adhesion molecules mRNA expression and the blood-brain barrier (BBB) permeability in C57BL/6 and BALB/c mice in Toxoplasma gondii infection, animals were infected with ME-49 strain. It was observed higher ALCAM on day 9 and VCAM-1 expression on days 9 and 14 of infection in the central nervous system (CNS) of C57BL/6 compared to BALB/c mice. The expression of ICAM-1 was high and similar in the CNS of both lineages of infected mice. In addition, C57BL/6 presented higher BBB permeability and higher IFN-γ and iNOS expression in the CNS compared to BALB/c mice. The CNS of C57BL/6 mice presented elevated tissue pathology and parasitism. In conclusion, our data suggest that the higher adhesion molecules expression and higher BBB permeability contributed to the major inflammatory cell infiltration into the CNS of C57BL/6 mice that was not efficient to control the parasite.  相似文献   

12.
Anti-diabetic potential of luteolin (LU) and luteolin-7-O-glucoside (LUG) were investigated in the amount of equimolar on KK-Ay mice. The results showed that both of LU and LUG significantly improved blood glucose, HbA1c, insulin, and HOMR-IR levels. Anti-inflammatory and anti-oxidative effects of the LU and LUG were also proved. Furthermore, TGs in serum and liver were significantly decreased in the LU and LUG groups, as well as the mRNA expression of fat acid expression-related genes (SREBP-1c), compared to the basal diet group (CON). When compared the effects between the LU and LUG groups, TGs of the LU group were lower than those of the LUG group, accompanied with significantly decreased FAS activity and SREBP-1c expression in liver. These results suggested that both LU and LUG had positive effects of anti-diabetes on KK-Ay mice, but LU more potently ameliorated diabetes than LUG, which might be attributed to the inhibitory of lipid synthesis.  相似文献   

13.
We have previously shown that medium-chain triglyceride (MCT) resulted in significantly less body fat mass than long-chain triglyceride (LCT) did in hypertriglyceridimic subjects. The possible mechanism for this was investigated by measuring and analyzing changes in the body fat, blood lipid profile, enzymatic level and activity of hormone-sensitive lipase (HSL) and its mRNA expression, and levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in white adipose tissue (WAT) of C57BL/6J mice fed for 16 weeks on an MCT or LCT diet. MCT induced lower body weight and body fat, and an improved blood lipid profile than LCT did. The enzymatic level and activity of HSL and its mRNA expression, and the levels of cAMP and PKA were significantly higher in WAT of mice fed with the MCT diet. No significant differences in the levels of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in WAT were apparent between the effects of MCT and LCT. It is concluded that lipolysis by the increased level and activity of HSL, which was induced by the activation of cAMP-dependent PKA in WAT, was partially responsible for the lower fat accumulation in C57BL/6J mice fed with MCT.  相似文献   

14.
Uncoupling protein 2 (UCP2) has been proposed to play a prominent role in the regulation of energy balance. UCP2 mRNA expression is upregulated in white adipose tissue (WAT) and liver, but is not altered in skeletal muscle in genetically obese ob/ob mice. The mechanisms involved in the upregulation of UCP2 in obesity have not been investigated. We have now examined the potential role of leptin, hyperphagia, increased tissue lipid content, and overexpression of tumor necrosis factor (TNF)-α in the upregulation of UCP2 mRNA expression in the liver and WAT in ob/ob mice. Treatment of ob/ob mice with leptin for 3 days significantly reduced their food intake but had no effect on the upregulation of UCP2 mRNA levels in the liver or WAT. To investigate the effect of feeding and higher tissue lipid content on the upregulation of UCP2 in liver and WAT, we compared UCP2 mRNA levels in ad-libitum fed and 72-h fasted control and ob/ob mice. In controls, fasting had no effect on UCP2 mRNA levels in liver, but increased UCP2 mRNA in WAT suggesting that the effects of fasting on UCP2 mRNA levels are tissue-specific. In ob/ob mice, fasting did not lower UCP2 mRNA levels in liver or WAT suggesting that the upregulation of UCP2 in ob/ob mice is not merely a direct consequence of increased food intake. 72-h fasting lowered hepatic total lipid content by 34% and 36% in control and ob/ob mice, respectively, without any corresponding decrease in hepatic UCP2 mRNA levels, suggesting that the enhanced UCP2 expression in the liver of ob/ob mice is not secondary to lipid accumulation in their livers. Although TNF-α has been shown to acutely increase UCP2 mRNA levels in liver and WAT, and is overexpressed in adipose tissue in obesity, deletion of the genes for both TNF receptors in ob/ob mice produces a further increase in UCP2 mRNA expression in liver and adipose tissue indicating a paradoxical inhibitory role. Taken together, these results suggest that the upregulation of UCP2 mRNA levels in the liver and WAT of ob/ob mice is not due to the lack of leptin, hyperphagia, increased tissue lipid content, or over-expression of TNF-α.  相似文献   

15.
Hypoadiponectinemia and decreased adiponectin gene expression in white adipose tissue (WAT) have been well observed in obese subjects and animal models. However, the mechanism for obesity-associated hypoadiponectinemia is still largely unknown. To investigate the regulatory role of energy intake, dietary fat, and adiposity in adiponectin gene expression and blood adiponectin level, a series of feeding regimens was employed to manipulate energy intake and dietary fat in obese-prone C57BL/6, genetically obese ob/ob, obese-resistant A/J and peroxisome proliferator-activated receptor-α gene knockout (PPARα KO) mice. Adiponectin gene expression in WAT and circulating adiponectin levels were studied in these dietary intervention-treated mice. Our study showed that calorie restriction (CR) robustly increased adiponectin gene expression in epididymal fat and blood adiponectin levels in both low-fat (LF) and high-fat (HF) diet-fed C57BL/6 mice. Although HF pair-fed C57BL/6 mice received the same amount of calories as LF ad libitum-fed mice, HF diet clearly increased adiposity but showed no significant effects on adiponectin gene expression and blood adiponectin level. CR also significantly increased blood adiponectin levels in ob/ob and A/J mice. Neither CR nor HF feeding displayed any significant effect on blood adiponectin half-life in C57BL/6 mice. Interestingly, CR increased PPARα expression in epididymal fat of C57BL/6 mice. Low levels of blood adiponectin and adiponectin gene expression in WAT were observed in PPARα KO mice. PPARα agonist treatment increased adiponectin mRNA levels in 3T3-L1 adipocytes. Furthermore, CR failed to increase adiponectin gene expression and blood adiponectin levels in PPARα KO mice. Therefore, our study demonstrated that energy intake, not dietary fat, plays an important role in regulating adiponectin gene expression and blood adiponectin level. PPARα mediates CR-enhanced adiponectin gene expression in WAT.  相似文献   

16.
Adiponectin and its receptors play an important role in energy homeostasis and insulin resistance, but their regulation remains to be fully elucidated. We hypothesized that high-fat diet would decrease adiponectin but increase adiponectin receptor (AdipoR1 and AdipoR2) expression in diet-induced obesity (DIO)-prone C57BL/6J and DIO-resistant A/J mice. We found that circulating adiponectin and adiponectin expression in white adipose tissue are higher at baseline in C57BL/6J mice compared with A/J mice. Circulating adiponectin increases at 10 wk but decreases at 18 wk in response to advancing age and high-fat feeding. However, adiponectin levels corrected for visceral fat mass and adiponectin mRNA expression in WAT are affected by high-fat feeding only, with both being decreased after 10 wk in C57BL/6J mice. Muscle AdipoR1 expression in both C57BL/6J and A/J mice and liver adipoR1 expression in C57BL/6J mice increase at 18 wk of age. High-fat feeding increases both AdipoR1 and AdipoR2 expression in liver in both strains of mice and increases muscle AdipoR1 expression in C57BL/6J mice after 18 wk. Thus advanced age and high-fat feeding, both of which are factors that predispose humans to obesity and insulin resistance, are associated with decreasing adiponectin and increasing AdipoR1 and/or AdipoR2 levels.  相似文献   

17.
Social isolation (SI) is a notable model of prolonged mild stress, characterized by multiple neurochemical and behavioral alterations, that appears particularly suitable for studying different aspects of the interplay between stress and ethanol (EtOH) consumption in order to characterize potential molecular mechanisms, including changes in the function of inhibitory GABAergic synapses, underlying such interaction. In C57BL/6J mice, SI is associated with an altered hippocampal concentration of the neuroactive steroids 3α-hydroxy-5α-pregnan-20-one (3α-5α-THP), an increased expression of the α4 and δ subunit of γ-aminobutyric acid type A receptors (GABAARs) in the dentate gyrus (DG), and a parallel enhancement of the stimulatory action of 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridin-3-ol (THIP) on GABAergic tonic currents recorded in voltage-clamped DG granule cells (DGGCs). In addition, SI in C57BL/6J mice determines an increase in voluntary EtOH consumption and EtOH preference when compared to group-housed (GH) control animals. Furthermore, in hippocampal slices of SI mice we also observed a marked reduction of both cellular excitability and long term potentiation (LTP) in pyramidal neurons of the CA1 hippocampal sub-region, effects that were prevented by the long term treatment of SI mice with the neuroactive steroid precursor progesterone. In this article, we summarize some of our recent findings on the effects of SI in C57BL/6J mice on voluntary EtOH intake, regulation of GABAARs gene expression and function and hippocampal long term synaptic plasticity.  相似文献   

18.
A cellular specific-locus mutation test is described for detecting mutant cells in mammals. The test is based upon the use of specific anti-C57BL/6J mouse hemoglobin antibody that binds hemoglobin “single” (hemoglobin s, present in C57BL/6J mouse) and not hemoglobin “diffuse” (hemoglobin d, present in DBA/2J mouse). Attempts to purify such antibody from pony and rabbit antisera through cross-absorption were unsuccessful. Immunization of LP/J mouse with C57BL/6J hemoglobin produced antiserum that reacted with s hemoglobin but not with d hemoglobin. In a fluorescent antibody technique, this antibody was found to label fixed red blood cells from C57BL/6J mice but not from DBA/2J mice. In a mixture of C57BL/6J and DBA/2J red cells, the C57BL/6J cells could be differentiated by their bright fluorescence from the non-fluorescent DBA/2J cells. Reconstruction experiment with artificial mixtures of DBA/2J and C57BL/6J cells showed that s hemoglobin bearing cells could be detected in DBA/2J red cells at frequencies as small as 0.4×10?6. Thus, the system is sensitive enough to detect d → s mutation in DBA/2J mice. Amino acid comparison of the globin chains of s and d hemoglobins shows that our antibody can probably detect mutations leading to a substitution of serine or proline by alanine at β20 position and/or a substitution of threonine by alanine at β139 position.  相似文献   

19.
Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-14C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The 14C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The 14C concentration was constant in adipose tissue and muscle of obese mice from 4h to 168h. 14C-label content in adipose tissue was significantly affected by genotype, whereas muscle 14C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total 14C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The 14C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest 14C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest 14C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity.  相似文献   

20.
A quantitative trait locus (QTL) analysis was performed on the size and shape of the mandible in F2 mice between KK-A y and C57BL/6 J strains and the effect of the A y allele on the morphology of the mandible was analyzed. A total of 13 measurements were taken on each right mandible. By means of discriminant and canonical discriminant analyses, KK-A y males and KK males were exactly discriminated from each other. In contrast to its known effects on body weight, the A y allele reduced the overall size of the mandible. QTL analysis of the 13 measurements and on three principal components extracted from these measurements identified multiple QTLs. When F2 a/a and F2 A y /a were analyzed separately, 11 significant main-effect QTLs were identified in F2 a/a, whereas only two QTLs were identified in F2 A y /a. Although four significant interactions were identified, all were in F2 a/a. The A y allele thus made the difference in the size and shape of the mandible between strains obscure. Among mandible QTLs, those on Chrs 5 (Mssq6 and Mssq7) and 15 (Mssq14) were important. Mssq6 had an effect on the height of the posterior mandible. Mssq7 had an effect on mandible length. Mssq14 had an effect on the height of the anterior and posterior mandible. Mssq7 and Mssq14 also had an effect on the overall size. Thus, mandible QTLs have distinct and characteristic sites of action. Therefore, mandible morphology will be determined largely by the combination of these QTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号