首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduction in levels of sex hormones at menopause in women is associated with two common, major outcomes, the accumulation of white adipose tissue, and the progressive loss of bone because of excess osteoclastic bone resorption exceeding osteoblastic bone formation. Current antiresorptive therapies can reduce osteoclastic activity but have only limited capacity to stimulate osteoblastic bone formation and restore lost skeletal mass. Likewise, the availability of effective pharmacological weight loss treatments is currently limited. Here we demonstrate that conditional deletion of hypothalamic neuropeptide Y2 receptors can prevent ongoing bone loss in sex hormone-deficient adult male and female mice. This benefit is attributable solely to activation of an anabolic osteoblastic bone formation response that counterbalances persistent elevation of bone resorption, suggesting the Y2-mediated anabolic pathway to be independent of sex hormones. Furthermore, the increase in fat mass that typically occurs after ovariectomy is prevented by germ line deletion of Y2 receptors, whereas in male mice body weight and fat mass were consistently lower than wild-type regardless of sex hormone status. Therefore, this study indicates a role for Y2 receptors in the accumulation of adipose tissue in the hypogonadal state and demonstrates that hypothalamic Y2 receptors constitutively restrain osteoblastic activity even in the absence of sex hormones. The increase in bone formation after release of this tonic inhibition suggests a promising new avenue for osteoporosis treatment.  相似文献   

2.
Androgens and body fat distribution   总被引:2,自引:0,他引:2  
An important sex difference in body fat distribution is generally observed. Men are usually characterized by the android type of obesity, with accumulation of fat in the abdominal region, whereas women often display the gynoid type of obesity, with a greater proportion of their body fat in the gluteal-femoral region. Accordingly, the amount of fat located inside the abdominal cavity (intra-abdominal or visceral adipose tissue) is twice as high in men compared to women. This sex difference has been shown to explain a major portion of the differing metabolic profiles and cardiovascular disease risk in men and women. Association studies have shown that circulating androgens are negatively associated with intra-abdominal fat accumulation in men, which explains an important portion of the link between low androgens and features of the metabolic syndrome. In women, the low circulating sex hormone-binding globulin (SHBG) levels found in abdominal obesity may indirectly indicate that elevated free androgens are related to increased visceral fat accumulation. However, data on non SHBG-bound and total androgens are not unanimous and difficult to interpret for total androgens. These studies focusing on plasma levels of sex hormones indirectly suggest that androgens may alter adipose tissue mass in a depot-specific manner. This could occur through site-specific modulation of preadipocyte proliferation and/or differentiation as well as lipid synthesis and/or lipolysis in mature adipocytes. Recent results on the effects of androgens in cultured adipocytes and adipose tissue have been inconsistent, but may indicate decreased adipogenesis and increased lipolysis upon androgen treatment. Finally, adipose tissue has been shown to express several steroidogenic and steroid-inactivating enzymes. Their mere presence in fat indirectly supports the notion of a highly complex enzymatic system modulating steroid action on a local basis. Recent data obtained in both men and women suggest that enzymes from the aldoketoreductase 1C family are very active and may be important modulators of androgen action in adipose tissue.  相似文献   

3.
Visceral adipose tissue has been shown to have high lipolytic activity. The aim of this study was to examine whether free fatty acid (FFA) uptake into visceral adipose tissue is enhanced compared to abdominal subcutaneous tissue in vivo. Abdominal adipose tissue FFA uptake was measured using positron emission tomography (PET) and [18F]‐labeled 6‐thia‐hepta‐decanoic acid ([18F]FTHA) and fat masses using magnetic resonance imaging (MRI) in 18 healthy young adult males. We found that FFA uptake was 30% higher in visceral compared to subcutaneous adipose tissue (0.0025 ± 0.0018 vs. 0.0020 ± 0.0016 µmol/g/min, P = 0.005). Visceral and subcutaneous adipose tissue FFA uptakes were strongly associated with each other (P < 0.001). When tissue FFA uptake per gram of fat was multiplied by the total tissue mass, total FFA uptake was almost 1.5 times higher in abdominal subcutaneous than in visceral adipose tissue. In conclusion, we observed enhanced FFA uptake in visceral compared to abdominal subcutaneous adipose tissue and, simultaneously, these metabolic rates were strongly associated with each other. The higher total tissue FFA uptake in subcutaneous than in visceral adipose tissue indicates that although visceral fat is active in extracting FFA, its overall contribution to systemic metabolism is limited in healthy lean males. Our results indicate that subcutaneous, rather than visceral fat storage plays a more direct role in systemic FFA availability. The recognized relationship between abdominal visceral fat mass and metabolic complications may be explained by direct effects of visceral fat on the liver.  相似文献   

4.
Background: Although obesity is a risk factor for patellofemoral osteoarthritis (OA), it is unclear whether the components of body composition, such as muscle and fat mass, are major determinants of articular cartilage properties at the patella. Objective: The aim of this study was to determine whether anthropometric and body composition measures, assessed over 10 years, were related to articular patella cartilage volume and defects in healthy adults with no clinical knee OA. Methods and Procedures: Two hundred and ninety‐seven healthy, community‐based adults aged 50–79 years with no clinical history of knee OA were recruited. Anthropometric and body composition (fat‐free mass and fat mass) data were measured at baseline (1990–1994) and follow‐up (2003–2004). Patella cartilage volume and defects were assessed at follow‐up (2003–2004) using magnetic resonance imaging (MRI). Results: After adjustment for potential confounders, increased measures of obesity (weight, BMI, waist circumference, and fat mass) at baseline and follow‐up were associated with an increased risk for the presence of patella cartilage defects at follow‐up for both men and women (all P ≤ 0.03). Increased baseline values for these variables tended to be associated with reduced patella cartilage volume at follow‐up for women (all P ≤ 0.11), but not men (all P ≤ 0.87). Discussion: We have demonstrated that increased anthropometric measures of obesity, as well as fat mass, are associated with an increased risk for the presence of patella cartilage defects in both men and women. Women, but not men, with greater baseline body mass, particularly adipose‐derived mass, appear to have an associated reduction in their patella cartilage volume. Interventions targeting a reduction in adipose tissue may help reduce the risk for the onset and progression of patellofemoral OA, particularly in women.  相似文献   

5.
Obesity prevalence is reaching pandemic proportions becoming a major public health threat for many industrialized nations. It is especially worrying as it causes a higher risk of premature death due to associated diseases such as type 2 diabetes, cardiovascular disease, and some cancers. Current evidence shows biological and genetic differences between adipose tissues depending on its anatomical location. Particularly, upper body/visceral fat distribution in obesity is closely linked to metabolic complications. In this report, we characterize for the first time the secretome of rat adipose tissue explants from different anatomical localizations and its differential analysis. Visceral, subcutaneous, and gonadal fat specific secretomes and differentially secreted proteins among the three fat depots were analyzed by 2-DE and MS. Reference maps for location-specific adipose tissue secretomes are shown and the 45 most significant differences are listed. Identified proteins include classical adipokines and novel secreted proteins. Interestingly, our results show that the type of proteins and their role in different biological processes diverge significantly when comparing the set of proteins identified from visceral, subcutaneous and gonadal fat explants. This study emphasizes and supports the differential role of adipose tissue in accordance to its anatomical localization.  相似文献   

6.

Background

In mammals, calories ingested in excess of those used are stored primarily as fat in adipose tissue; consistent ingestion of excess calories requires an enlargement of the adipose tissue mass. Thus, a dysfunction in adipose tissue growth may be a key factor in insulin resistance due to imbalanced fat storage and disrupted insulin action. Adipose tissue growth requires the recruitment and then the development of adipose precursor cells, but little is known about these processes in vivo.

Methodology

In this study, adipose cell-size probability distributions were measured in two Zucker fa/fa rats over a period of 151 and 163 days, from four weeks of age, using micro-biopsies to obtain subcutaneous (inguinal) fat tissue from the animals. These longitudinal probability distributions were analyzed to assess the probability of periodic phenomena.

Conclusions

Adipose tissue growth in this strain of rat exhibits a striking temporal periodicity of approximately days. A simple model is proposed for the periodicity, with PPAR signaling driven by a deficit in lipid uptake capacity leading to the periodic recruitment of new adipocytes. This model predicts that the observed period will be diet-dependent.  相似文献   

7.
It is generally accepted that the location of body fat deposits may play an important role in the risk of developing some endocrine and metabolic diseases. We have studied the effect of food restriction and food restriction/refeeding, often practiced by individuals trying to lose body weight, on the expression of genes which are associated with obesity and certain metabolic disorders in inguinal, epididymal, and perirenal rat white adipose tissues. Gene expression was analyzed by real time semi-quantitative polymerase chain reaction and by Western blot. We found that prolonged food restriction caused a significant decrease of body and adipose tissue mass as well as the increase of Scd1 and Elovl6 gene expressions in all main rat adipose tissue deposits. Food restriction/refeeding caused increases of: a) Scd1 and Elovl6 mRNA levels in adipose tissue, b) Scd1 protein level and c) desaturation index in adipose tissue. The increased expression of both genes was unusually high in inguinal adipose tissue. The results suggest that the increase of Scd1 and Elovl6 gene expressions in white adipose tissue by prolonged food restriction and prolonged food restriction/refeeding may contribute to accelerated fat recovery that often occurs in individuals after food restriction/refeeding.  相似文献   

8.
Increasing experimental and observational evidence in both animals and humans suggests that early life events are important in setting later fat mass. This includes both the number of adipocytes and the relative distribution of both brown and white adipose tissue. Brown adipose tissue is characterised as possessing a unique uncoupling protein (UCP)1 which enables the rapid generation of large amounts of heat and is most abundant in the newborn. In large mammals such as sheep and humans, brown fat that is located around the major internal organs, is largely lost during the postnatal period. However, it is retained in small and discrete areas into adulthood when it is sensitive to environmental cues such as changes in ambient temperature or day length. The extent to which brown adipose tissue is lost or replaced by white adipose tissue and/or undergoes a process of transdifferentiation remains controversial. Small amounts of UCP1 can also be present in skeletal muscle which now appears to share the same common precursor cell as brown adipose tissue. The functional consequences of UCP1 in muscle remain to be confirmed but it could contribute to dietary induced thermogenesis. Challenges in elucidating the primary mechanisms regulating adipose tissue development include changes in methylation status of key genes during development in different species, strains and adipose depots. A greater understanding of the mechanisms by which early life events regulate adipose tissue distribution in young offspring are likely to provide important insights for novel interventions that may prevent excess adiposity in later life.  相似文献   

9.
The synthesis of apoE by adipocytes has profound effects on adipose tissue lipid flux and gene expression. Using adipose tissue transplantation from wild-type (WT) to apoE knockout (EKO) mice, we show that adipose tissue also contributes to circulating apoE. Different from circulating apoE produced by bone marrow transplantation (BMT), however, adipose tissue-derived apoE does not correct hyperlipidemia or suppress atherosclerosis. ApoE secreted by macrophages has a more acidic isoform distribution, and it increases binding of reconstituted VLDL particles to hepatocytes and fibroblasts more effectively than apoE secreted by adipocytes. The incremental binding can be entirely accounted for by binding to the LDL receptor. After BMT into EKO hosts, plasma cholesterol and macrophage-derived apoE are largely within IDL/LDL- and HDL-sized particles. After adipose tissue transplantation, most cholesterol and adipocyte apoE remain in VLDL. After BMT, circulating apoE no longer demonstrates predominance of acidic isoforms compared with that circulating after fat transplantation. In conclusion, fat transplantation provides circulating apoE levels similar to those provided by bone marrow transplantation, but it does not suppress hyperlipidemia or atherosclerosis. A potential mechanism contributing to this difference is differential binding to cell surface lipoprotein receptors.  相似文献   

10.
Obesity increases the risk of development of atherosclerosis. However, this risk significantly depends on adipose tissue distribution in the body and ectopic accumulation of visceral adipose tissue (VAT). Recent evidence suggests that each visceral fat deposit is anatomically and functionally different. Due to proximity to the organ, each visceral fat deposit exerts a local modulation rather than a systemic effect. Because of its unique location and biomolecular properties, a “non-traditional” fat depot – the epicardial adipose tissue – has been considered to play a causative role in atherosclerosis. Epicardial adipose tissue may be measured with imaging techniques and is clinically related to left ventricular mass, coronary artery disease, and metabolic syndrome. Therefore, epicardial fat measurement may play a role in stratification of cardiometabolic risk and may serve as a therapeutic target.  相似文献   

11.
Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.  相似文献   

12.
Although aging enhances atherosclerosis, we do not know if this occurs via alterations in circulating immune cells, lipid metabolism, vasculature, or adipose tissue. Here, we examined whether aging exerts a direct pro-atherogenic effect on adipose tissue in mice. After demonstrating that aging augmented the inflammatory profile of visceral but not subcutaneous adipose tissue, we transplanted visceral fat from young or aged mice onto the right carotid artery of Ldlr−/− recipients. Aged fat transplants not only increased atherosclerotic plaque size with increased macrophage numbers in the adjacent carotid artery, but also in distal vascular territories, indicating that aging of the adipose tissue enhances atherosclerosis via secreted factors. By depleting macrophages from the visceral fat, we identified that adipose tissue macrophages are major contributors of the secreted factors. To identify these inflammatory factors, we found that aged fat transplants secreted increased levels of the inflammatory mediators TNFα, CXCL2, and CCL2, which synergized to promote monocyte chemotaxis. Importantly, the combined blockade of these inflammatory mediators impeded the ability of aged fat transplants to enhance atherosclerosis. In conclusion, our study reveals that aging enhances atherosclerosis via increased inflammation of visceral fat. Our study suggests that future therapies targeting the visceral fat may reduce atherosclerosis disease burden in the expanding older population.  相似文献   

13.

Background

Obesity is associated with inflammation of visceral adipose tissues, which increases the risk for insulin resistance. Animal models suggest that T-lymphocyte infiltration is an important early step, although it is unclear why these cells are attracted. We have recently demonstrated that dietary triglycerides, major components of high fat diets, promote intestinal absorption of a protein antigen (ovalbumin, “OVA”). The antigen was partly transported on chylomicrons, which are prominently cleared in adipose tissues. We hypothesized that intestinally absorbed gut antigens may cause T-lymphocyte associated inflammation in adipose tissue.

Methodology/Principal Findings

Triglyceride absorption promoted intestinal absorption of OVA into adipose tissue, in a chylomicron-dependent manner. Absorption tended to be higher in mesenteric than subcutaneous adipose tissue, and was lowest in gonadal tissue. OVA immunoreactivity was detected in stromal vascular cells, including endothelial cells. In OVA-sensitized mice, OVA feeding caused marked accumulation of CD3+ and osteopontin+ cells in mesenteric adipose tissue. The accumulating T-lymphocytes were mainly CD4+. As expected, high-fat (60% kCal) diets promoted mesenteric adipose tissue inflammation compared to low-fat diets (10% Kcal), as reflected by increased expression of osteopontin and interferon-gamma. Immune responses to dietary OVA further increased diet-induced osteopontin and interferon-gamma expression in mesenteric adipose. Inflammatory gene expression in subcutaneous tissue did not respond significantly to OVA or dietary fat content. Lastly, whereas OVA responses did not significantly affect bodyweight or adiposity, they significantly impaired glucose tolerance.

Conclusions/Significance

Our results suggest that loss or lack of immunological tolerance to intestinally absorbed T-lymphocyte antigens can contribute to mesenteric adipose tissue inflammation and defective glucose metabolism during high-fat dieting.  相似文献   

14.
15.
Bone loss in type 1 diabetes is accompanied by increased marrow fat, which could directly reduce osteoblast activity or result from altered bone marrow mesenchymal cell lineage selection (adipocyte vs. osteoblast). CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of both adipocyte and osteoblast differentiation. C/EBPβ-null mice have delayed bone formation and defective lipid accumulation in brown adipose tissue. To examine the balance of C/EBPβ functions in the diabetic context, we induced type 1 diabetes in C/EBPβ-null (knockout, KO) mice. We found that C/EBPβ deficiency actually enhanced the diabetic bone phenotype. While KO mice had reduced peripheral fat mass compared with wild-type mice, they had 5-fold more marrow adipocytes than diabetic wild-type mice. The enhanced marrow adiposity may be attributed to compensation by C/EBPδ, peroxisome proliferator-activated receptor-γ2, and C/EBPα. Concurrently, we observed reduced bone density. Relative to genotype controls, trabecular bone volume fraction loss was escalated in diabetic KO mice (-48%) compared with changes in diabetic wild-type mice (-22%). Despite greater bone loss, osteoblast markers were not further suppressed in diabetic KO mice. Instead, osteoclast markers were increased in the KO diabetic mice. Thus, C/EBPβ deficiency increases diabetes-induced bone marrow (not peripheral) adipose depot mass, and promotes additional bone loss through stimulating bone resorption. C/EBPβ-deficiency also reduced bone stiffness and diabetes exacerbated this (two-way ANOVA P < 0.02). We conclude that C/EBPβ alone is not responsible for the bone vs. fat phenotype switch observed in T1 diabetes and that suppression of CEBPβ levels may further bone loss and decrease bone stiffness by increasing bone resorption.  相似文献   

16.
Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.  相似文献   

17.
Backround: Leptin a cytokine protein secreted by adipose tissue raises considerable interest as a potential mediator of the protective effects of fat mass on bone tissue. After menopause heavier women conserve bone mass better than those with lower body weight. The protective effect of obesity on bone mass has been ascribed to a high body fat content. As Leptin levels reflect the body fat content it has emerged as a possible mediator of these protective effects. Methods: A search of the available literature focused on the role of leptin on bone tissue. Results: Both peripheral and central action of leptin on bone metabolism have been proposed. In vitro and in vivo evidence supports the hypothesis that leptin can act directly or indirectly on bone remodelling by modulating both osteoblast and osteoclast activities. However, studies in humans have not yet been able to confirm these actions possibly because of the shifting balance between stimulatory direct action and suppressive indirect action of leptin on bones via the hypothalamus. The effects of oestrogen decline and deficiency during natural or artificially induced menopause and administration of hormone replacement therapy has on leptin production remains controversial. Various studies have shown differences in leptin values in pre- and postmenopausal women. The existing clinical data on this issue are discordant. Conclusion: Larger clinical studies are necessary to clarify leptin's role in vivo and to assess the contribution of the central and peripheral role of leptin in the overall maintenance of bone turnover in human beings.  相似文献   

18.
The reduction of adipose depots is widely considered to be the optimal approach to limit pathologies associated with obesity. While many current antiobesity strategies are centered on regulating satiety, these approaches typically attempt an overall weight loss and are unable to target distinct adipose depots specifically associated with disease risk. The authors report a novel therapeutic modality utilizing localized and sustained delivery of drugs to provide for the selective ablation of adipose tissue. Using the epididymal fat pad of Sprague-Dawley rats as a model, they injected into the tissue poly(lactide-co-glycolide) microspheres encapsulating tumor necrosis factor-alpha, a well-known regulator of adipose tissue mass. The utility of this approach was investigated in vivo by measuring the fat pad mass relative to the contralateral control within the same animal (n = 4 at each time point) and in vitro by measuring apoptosis in adipose organ cultures. The authors demonstrated control over the localization of tumor necrosis factor-alpha by performing blood analysis. This is the first report of localized drug delivery for adipose tissue ablation, and these results indicate the potential utility of the general tissue ablation approach for treatment of numerous pathologies.  相似文献   

19.
Objective: Previous studies have reported racial differences in the amount of visceral adipose tissue (VAT), a risk factor for metabolic diseases. These results are equivocal and have not controlled for hormonal influences on VAT mass. This study was designed to measure the extent to which race is associated with VAT, controlling for total adipose tissue (TAT) mass and testosterone. Research Methods and Procedures: Using a cross‐sectional study design, we measured TAT mass using DXA, VAT and subcutaneous adipose tissue mass using magnetic resonance imaging, and sex hormones using radioimmunoassay in 224 African‐American and white men and women. Results: White men had increased VAT mass, even when controlling for TAT and age, compared with African‐American men. White women also had a higher VAT mass compared with African‐American women, but only when controlling for TAT and age. When multiple linear regression was used to evaluate the racial differences in VAT mass in a subset of subjects (n = 80), controlling for sex hormones, it was found that white men, but not women, had increased VAT mass compared with their African‐American counterparts. Discussion: Based on the results of this study, we conclude that, when controlling for TAT, sex hormone levels, and age, white men, but not women, have more VAT mass than African‐American men and women. Additional studies are needed to explore possible environmental and genetic influences on fat distribution relative to race and sex.  相似文献   

20.
Plasma levels of plasminogen activator inhibitor-1 (PAI-1) are elevated in obesity and correlate with body mass index. The increase in PAI-1 associated with obesity likely contributes to increased cardiovascular risk and may predict the development of type 2 diabetes mellitus. Although adipocytes are capable of synthesizing PAI-1, the bulk of evidence indicates that cells residing in the stromal fraction of visceral fat are the primary source of PAI-1. We hypothesized that bone marrow-derived PAI-1, e.g. derived from macrophages located in visceral fat, contributes to the development of diet-induced obesity. To test this hypothesis, male C57BL/6 wild-type mice and C57BL/6 PAI-1 deficient mice were transplanted with either PAI-1(-/-), PAI-1(+/-), or PAI-1(+/+) bone marrow. The transplanted animals were subsequently fed a high fat diet for 24 weeks. Our findings show that only the complete absence of PAI-1 protects from the development of diet-induced obesity, whereas the absence of bone marrow-derived PAI-1 protects against expansion of the visceral fat mass. Remarkably, there is a link between the PAI-1 levels, the degree of inflammation in adipose tissue, and the development of obesity. Based on these findings we suggest that bone marrow-derived PAI-1 has an effect on the development of obesity through its effect on inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号