首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To produce a large quantity of the angiotensin-converting-enzyme(ACE)-inhibiting peptide YG-1, which consists of ten amino acids derived from yeast glyceraldehyde-3-phosphate dehydrogenase, a high-level expression was explored with tandem multimers of the YG-1 gene in Escherichia coli. The genes encoding YG-1 were tandemly multimerized to 9-mers, 18-mers and 27-mers, in which each of the repeating units in the tandem multimers was connected to the neighboring genes by a DNA linker encoding Pro-Gly-Arg for the cleavage of multimers by clostripain. The multimers were cloned into the expression vector pET-21b, and expressed in E. coli BL21(DE3) with isopropyl β-d-thiogalactopyranoside induction. The expressed multimeric peptides encoded by the 9-mer, 18-mer and 27-mer accumulated intracellularly as inclusion bodies and comprised about 67%, 25% and 15% of the total proteins in E. coli respectively. The multimeric peptides expressed as inclusion bodies were cleaved with clostripain, and active monomers were purified to homogeneity by reversed-phase high-performance liquid chromatography. In total, 105 mg pure recombinant YG-1 was obtained from 1 l E. coli culture harboring pETYG9, which contained the 9-mer of the YG-1 gene. The recombinant YG-1 was identical to the natural YG-1 in molecular mass, amino acid sequence and ACE-inhibiting activity. Received: 6 January 1998 / Received revision: 23 February 1998 / Accepted: 24 February 1998  相似文献   

2.
A Bacillus megaterium genomic fragment, which encoded an activator homologous to σ54 regulators and which was capable of activating Escherichia coli ato genes in trans, was detected in a gene library of B.␣megaterium screened for β-ketothiolase activity. The fragment presented only one complete open reading frame (ORF1), which encoded a protein of 398 amino acids. The recombinant plasmid complemented mutations in the Escherichia coli atoC regulatory gene. The constitutive expression of the E. coli ato operon mediated by ORF1 could be useful for the synthesis of polyhydroxyalkanoates with different flexibility properties by recombinant E. coli strains. Received: 20 October 1997 / Received revision: 18 February 1998 / Accepted: 23 February 1998  相似文献   

3.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

4.
A 5.7-kbp region of the Clostridium thermocellum F1 DNA was sequenced and found to contain two contiguous and highly homologous xylanase genes, xynA and xynB. The xynA gene encoding the xylanase XynA consists of 2049 bp and encodes a protein of 683 amino acids with a molecular mass of 74 511 Da, and the xynB gene encoding the xylanase XynB consists of 1371 bp and encodes a protein of 457 amino acids with a molecular mass of 49 883 Da. XynA is a modular enzyme composed of a typical N-terminal signal peptide and four domains in the following order: a family-11 xylanase domain, a family-VI cellulose-binding domain, a dockerin domain, and a NodB domain. XynB exhibited extremely high overall sequence homology with XynA (identity 96.9%), while lacking the NodB domain present in the latter. These facts suggested that the xynA and xynB genes originated from a common ancestral gene through gene duplication. XynA was purified from a recombinant Escherichia coli strain and characterized. The purified enzyme was highly active toward xylan; the specific activity on oat-spelt xylan was 689 units/mg protein. Immunological and zymogram analyses suggested that XynA and XynB are components of the C. thermocellum F1 cellulosome. Received: 21 September 1998 / Received revision: 30 October 1998 / Accepted: 29 November 1998  相似文献   

5.
The gene celA, encoding an endoglucanase from the strain Bacillus sp. BP-23, was cloned and expressed in Escherichia coli. The nucleotide sequence of a 1867-bp DNA fragment containing the celA gene was determined, revealing an open reading frame of 1200 nucleotides that encodes a protein of 44 803 Da. The deduced amino acid sequence of the encoded enzyme shows high homology to those of enzymes belonging to subtype 4 of the family-A cellulases. The celA gene product synthesized in E. coli showed activity on carboxymethylcellulose and lichenan but no activity was found on Avicel. Activity was enhanced in the presence of 10 mM Mg2+ and Ca2+ and showed its maximum at 40 °C and pH 4.0. Study of the performance of CelA on paper manufacture from agricultural fibres showed that treatment with the enzyme improved the properties of the pulp and the quality of paper. CelA treatment enhanced the physical properties (stretch and tensile index) of paper from wheat straw, while dewatering properties were slightly diminished. Electron-microscope analysis showed that the surface of straw fibres was modified by CelA. Received: 11 February 1998 / Received revision: 20 March 1998 / Accepted: 20 March 1998  相似文献   

6.
The genomic DNA and cDNA for a gene encoding a novel trehalose synthase (TSase) catalyzing trehalose synthesis from α-d-glucose 1-phosphate and d-glucose were cloned from a basidiomycete, Grifola frondosa. Nucleotide sequencing showed that the 732-amino-acid TSase-encoding region was separated by eight introns. Consistent with the novelty of TSase, there were no homologous proteins registered in the databases. Recombinant TSase with a histidine tag at the NH2-terminal end, produced in Escherichia coli, showed enzyme activity similar to that purified from the original G. frondosa strain. Incubation of α-d-glucose 1-phosphate and d-glucose in the presence of recombinant TSase generated trehalose, in agreement with the enzymatic property of TSase that the equilibrium lay far in the direction of trehalose synthesis. Received: 12 January 1998 / Received revision: 20 February 1998 / Accepted: 20 March 1998  相似文献   

7.
The gene coding for cyanidase, which catalyzes the hydrolysis of cyanide to formate and ammonia, was cloned from chromosomal DNA of Pseudomonas stutzeri AK61 into Escherichia coli. The cyanidase gene consisted of an open reading frame of 1004 bp, and it was predicted that cyanidase was composed of 334 amino acids with a calculated molecular mass of 37 518 Da. The amino acid sequence of cyanidase showed a 35.1% and 26.4% homology to aliphatic nitrilase from Rhodococcus rhodochrous K22 and cyanide hydratase from Fusarium lateritium, respectively. A unique cysteine residue of aliphatic nitrilase, which was suggested to play an essential role in the catalytic activity, was conserved in cyanidase. The active form of cyanidase was successfully expressed by a DNA clone containing the cyanidase gene in E.coli. Its productivity was approximately 230 times larger than that of P. stutzeri AK61. The characteristics of the expressed cyanidase, including optimum pH, optimum temperature, Michaelis constant (K m) for cyanide and specific activity, were similar to those of the native enzyme from P. stutzeri AK61. Received: 24 October 1997 / Received last revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

8.
The asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] using Escherichia coli cells, which coexpress both the aldehyde reductase gene from Sporobolomyces salmonicolor and the glucose dehydrogenase (GDH) gene from Bacillus megaterium as a catalyst was investigated. In an organic solvent-water two-phase system, (R)-CHBE formed in the organic phase amounted to 1610 mM (268 mg/ml), with a molar yield of 94.1% and an optical purity of 91.7% enantiomeric excess. The calculated turnover number of NADP+ to CHBE formed was 13 500 mol/mol. Since the use of E. coli JM109 cells harboring pKAR and pACGD as a catalyst is simple, and does not require the addition of GDH or the isolation of the enzymes, it is highly advantageous for the practical synthesis of (R)-CHBE. Received: 5 October 1998 / Received revision: 16 November 1998 / Accepted: 5 December 1998  相似文献   

9.
The gdhA gene encoding glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was cloned and sequenced. Phylogenetic analysis was performed on an alignment of 25 GDH sequences including KOD1-GDH, and two protein families were distinguished, as previously reported. KOD1-GDH was classified as new member of the hexameric GDH Family II. The gdhA gene was expressed in Escherichia coli, and recombinant KOD1-GDH was purified. Its enzymatic characteristics were compared with those of the native KOD1-GDH. Both enzymes had a molecular mass of 47 300 Da and were shown to be functional in a hexameric form (284 kDa). The N-terminal amino acid sequences of native KOD1-GDH and the recombinant GDH were VEIDPFEMAV and MVEIDPFEMA, respectively, indicating that native KOD1-GDH does not retain the initial methionine at the N-terminus. The recombinant GDH displayed enzyme characteristics similar to those of the native GDH, except for a lower level of thermostability, with a half-life of 2 h at 100° C, compared to 4 h for the native enzyme purified from KOD1. Kinetic studies suggested that the reaction is biased towards glutamate production. KOD1-GDH utilized both coenzymes NADH and NADPH, as do most eukaryal GDHs. Received: 6 May 1997 / Accepted: 23 September 1997  相似文献   

10.
The gene for the thermostable pyruvate kinase of Microbispora thermodiastatica IFO 14046, a moderate thermophilic actinomycete, was cloned in Escherichia coli. This gene consists of an open reading frame of 1422 nucleotides and encodes a protein of 474 amino acids with molecular mass of 50 805 Da. The open reading frame was confirmed as the pyruvate kinase gene by comparison with the N-terminal amino acid sequence of the purified pyruvate kinase from M. thermodiastatica. Received: 19 May 1997 / Received last revision: 22 September 1997 / Accepted: 14 October 1997  相似文献   

11.
Various concentrations of isopropyl β-d-thiogalactopyranoside (IPTG) were used to induce production of the enzyme penicillin G acylase by recom binant Escherichia coli harboring plasmid pQEA11. The plasmid pQEA11 carries a wild-type pga gene, which is under the control of the tac promoter and lacIq. At low IPTG concentrations (0.025 – 0.1 mM), enzyme activity increased with increasing IPTG concentrations. At higher IPTG concentrations (0.2 and 0.5 mM), enzyme activity declined progressively. Examination of induced recombinant E. coli cells by transmission electron microscopy showed the presence of only periplasmic inclusion bodies at low IPTG concentrations (up to 0.1 mM) and both periplasmic and cytoplasmic inclusion bodies at high IPTG concentrations (0.2 mM and 0.5 mM). Results from sodium dodecyl sulfate/polyacrylamide gel electrophoresis and immunoblots of whole-cell proteins, membrane proteins and inclusion body proteins in these cells indicated that cytoplasmic inclusion bodies constituted an accumulation of preproenzyme (i.e., precursor polypeptide containing a signal peptide) and that periplasmic inclusion bodies constituted an accumulation of proenzyme (i.e., precursor polypeptide lacking a signal peptide). Received: 27 March 1996 / Received revision: 2 July 1996 / Accepted: 10 November 1996  相似文献   

12.
The Tn5-based transposon Tn5-KIL3 (Miksch et al. 1997c) bearing the kil gene of the ColE1 plasmid of Escherichia coli, which mediates controlled export of periplasmic proteins into the culture medium, was stably integrated into the chromosome of Klebsiella planticola with high transposition frequency. A Bacillus hybrid β-glucanase located on an RSF1010-derived plasmid was mobilized from E.coli to K. planticola and used as a reporter protein to select strains with high expression and secretion competence. During fermentation experiments it was shown that the production of β-glucanase in K. planticola was improved to an unexpectedly high level when the enzyme was secreted into the medium. Due to the stationary-phase promoter used for the expression of the kil gene the secretion of β-glucanase into the medium started at the transition from the exponential to the stationary phase, as in E. coli, and the fraction of secreted protein reached 90%. The results showed that K. planticola may represent an interesting organism for the production of heterologous proteins. Received: 22 July 1998 / Received revision: 25 November 1998 / Accepted: 29 November 1998  相似文献   

13.
The function of the endoplasmic-reticulum-localized chaperone binding protein (BiP) in relation to protein secretion in filamentous fungi was studied. It was shown that the overproduction of several homologous and heterologous recombinant proteins by Aspergillus strains induces the expression of bipA, the BiP-encoding gene from Aspergillus niger and Aspergillus awamori. As this result could imply that BiP plays a role in protein overproduction, the effect of modulation of bipA gene expression on protein secretion was studied in several recombinant strains expressing glucoamylase (glaA) fusion genes. For overproduction of BiPA in these strains, extra copies of the bipA gene under the control of an inducible promoter were introduced. To allow analysis of the effect of a decreased bipA expression level on protein secretion, replacement of the wild-type gene for a bipA gene driven by the glaA promoter was attempted. However, this endeavour failed because of the lethality of this replacement. Although the final amount of secreted recombinant protein did not change significantly in strains with increased BiPA levels, increased levels of unprocessed fusion protein were detected in the total protein extracts of these strains. Received: 9 February 1998 / Received last revision: 26 May 1998 / Accepted: 14 June 1998  相似文献   

14.
Previous investigations have reported that bacterial suspension cultures grow to higher stationary concentrations in space flight than on Earth; however, none of these investigations included extensive ground controls under varied inertial conditions. This study includes extensive controls and cell-growth data taken at several times during lag phase, log phase, and stationary phase of Escherichia coli and Bacillus subtilis. The Marquardt-Levenberg, least-squares fitting algorithm was used to calculate kinetic growth parameters from the logistic bacterial growth equations for space-flight and control growth curves. Space-flight cultures grew to higher stationary-phase concentrations and had shorter lag-phase durations. Also, evidence was found for increased exponential growth rate in space. Received: 27 February 1998 / Received revision: 21 August 1998 / Accepted: 3 September 1998  相似文献   

15.
Bacillus thuringiensis subsp. tenebrionis insecticidal protein was produced in recombinant Escherichia coli and purified to near homogeneity to provide quantities of protein for safety-assessment studies associated with the registration of transgenic potato plants. The 68-kDa protein is produced naturally by Bacillus thuringiensis subsp. tenebrionis by translation initiation at an internal initiation site in the native DNA sequence. The gene sequence specific for this truncated protein was expressed in E. coli strain JM 101 and fermented at the 1000-l scale. The protein accumulated as insoluble inclusion bodies, and was purified by extraction at pH␣10.8 with carbonate buffer, selective precipitation at pH 9.0, and differential centrifugation. No chromatography steps were required to produce over 50 g purified protein as a lyophilized powder with a purity greater than 95 % and demonstrating full insecticidal activity against Colorado potato beetle larvae. The protein was further characterized to assure identity and suitability for use in safety-assessment studies. Received: 31 May 1996 / Received revision: 11 September 1996 / Accepted: 13 October 1996  相似文献   

16.
A plasmid (pYP17) containing a genomic DNA insert from Escherichia coli K-12 that confers the ability to hydrolyze carboxymethylcellulose (CMC) was isolated from a genomic library constructed in the cosmid vector pLAFR3 in E. coli DH5α. A small 1.65-kb fragment, designated bcsC (pYP300), was sequenced and found to contain an ORF of 1,104 bp encoding a protein of 368 amino acid residues, with a calculated molecular weight of 41,700 Da. BcsC carries a typical prokaryotic signal peptide of 21 amino acid residues. The predicted amino acid sequence of the BcsC protein is similar to that of CelY of Erwinia chrysanthemi, CMCase of Cellulomonas uda, EngX of Acetobacter xylinum, and CelC of Agrobacterium tumefaciens. Based on these sequence similarities, we propose that the bcsC gene is a member of glycosyl hydrolase family 8. The apparent molecular mass of the protein, when expressed in E. coli, is approximately 40 kDa, and the CMCase activity is found mainly in the extracellular space. The enzyme is optimally active at pH 7 and a temperature of 40° C. Received: 6 February 1998 / Accepted: 6 November 1998  相似文献   

17.
The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates. Received: 3 December 1998 / Received revision: 23 February 1999 / Accepted: 14 March 1999  相似文献   

18.
 Poly[(R)-3-hydroxybutyric acid] (PHB) was produced at 37 °C by a recombinant Escherichia coli harboring the Alcaligenes eutrophus biosynthesis phbCAB genes in Luria-Bertani media containing glucose at 10–30 g/l at different pH values and the time-dependent changes in the molecular mass of PHB were studied. PHB polymers accumulated within cells while glucose was present in the medium. The number-average molecular mass of PHB decreased with time during the course of PHB accumulation, and the values for PHB were markedly dependent on the cultivation conditions of the E. coli, ranging from 0.5 MDa to 20 MDa. Under specific conditions (pH 6.0), E. coli produced PHB with an extremely high molecular mass (20 MDa). It has been suggested that a chain-transfer agent is generated in E. coli cells during the accumulation of PHB. Received: 18 July 1996 / Received revision: 4 November 1996 / Accepted: 4 November 1996  相似文献   

19.
Procedures have been developed allowing recombinant DNA work with Clostridium acetobutylicum DSM 792. Electroporation was used to introduce plasmid DNA into exponentially growing clostridial cells and 6 × 102 transformants/μg DNA could be obtained at a time constant of 5.5 ms, 1.8 kV, 50 μF, and 600 Ω. The method also allowed the taxonomic group IV strain NI-4082 to be transformed (101 transformants/μg DNA). Plasmid preparation from recombinant clostridia was optimal when a modification of the alkaline lysis method was employed. It was also important to use cells from the mid-logarithmic growth phase. Recombinant strains could be easily preserved as spore suspensions; under all conditions tested plasmids were maintained. Received: 17 March 1998 / Received revision: 17 August 1998 / Accepted: 26 August 1998  相似文献   

20.
 A gene library of Cellulomonas pachnodae was constructed in Escherichia coli and was screened for endoglucanase activity. Five endoglucanase-positive clones were isolated that carried identical DNA fragments. The gene, designated cel6A, encoding an endoglucanase enzyme, belongs to the glycosyl hydrolase family 6 (cellulase family B). The recombinant Cel6A had a molecular mass of 53 kDa, a pH optimum of 5.5, and a temperature optimum of 50–55 °C. The recombinant endoglucanase Cel6A bound to crystalline cellulose and beech litter. Based on amino acid sequence similarity, a clear cellulose-binding domain was not distinguished. However, the regions in the Cel6A amino acid sequence at the positions 262–319 and 448–473, which did not show similarity to any of the known family-6 glycosyl hydrolases, may be involved in substrate binding. Received: 14 January 1999 / Received revision: 29 March 1999 / Accepted: 6 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号