首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
摄食的调节     
本文简述了饥饿、饱感、食欲的概念。分析了人和高等动物的摄食中枢,指出下丘脑腹外侧区对摄食的始动有关,下丘脑腹內侧核能抑制摄食、降低胃酸分泌,激活糖元分解等分解代谢反应。许多高级中枢也控制进食。重点阐述了人和高等动物的营养、代谢、激素、进食活动和神经递质等对摄食的调节和影响。  相似文献   

2.
现行中学《生理卫生》教材把“脂肪在胃中的排空时间长”作为“吃了油性较大的食物不易感到饥饿”的原因,使大多数师生错误地认为“饥饿感就是由于胃排空产生的”。生理学上也曾认为胃排空后不久要出现空胃运动并伴有饥饿感,但近年来的生理学研究否认了这一观点,认为饥饿感是很复杂的,主要与血糖水平和心理因素有关。有人对清醒自由活动的猫进行实验,通过埋藏电极刺激的方法找到了饥饿中枢(摄食中枢)在左右下丘脑外侧区,饱中枢在下丘脑腹内侧核。分别记录饥饿中枢和饱中枢的神经元放电,当动物饥饿时前者放电频率  相似文献   

3.
食欲肽及其受体   总被引:1,自引:0,他引:1  
以前认为在下丘脑的腹内侧区及下丘脑外侧区分别存在饱中枢(satietycenter)及摄食中枢(feedingcenter),进行机体能量平衡的中枢性调节。但随着许多参与机体能量平衡调节的神经递质及神经肽的发现,说明机体能量平衡的中枢性调节并非如此简...  相似文献   

4.
传统上认为下丘脑腹内侧核饱食中枢与腹外侧区摄食中枢呈现交互抑制的学说,迄今仍有人支持。但也有人提出该学说的实验证据尚嫌不足。本文主要介绍下丘脑损伤性肥胖机制的新进展,分别概述了过食学说、植物神经(迷走神经-高胰岛素血症)学说以及小肠对葡萄糖吸收能力增强等。  相似文献   

5.
目的探讨下丘脑中的亨廷顿蛋白相关蛋白1(huntingtin-associated protein 1,HAP1)是否与摄食有关。方法免疫印迹法检测禁食对大鼠下丘脑HAP1表达的影响,RT-PCR法检测禁食对大鼠下丘脑HAP1 mRNA表达的影响,免疫组织化学染色法观察禁食对下丘脑与摄食调节有关核团内HAP1表达的影响。结果免疫印记分析和RT-PCR检测显示,与正常进食的大鼠比较,禁食1d、2d、3d、4d后大鼠下丘脑HAP1表达逐渐增多;免疫组织化学研究表明,弓状核、背内侧核、外侧下丘脑区内HAP1的表达在禁食后显著增多,而禁食对腹内侧核HAP1的表达无明显影响。结论下丘脑中的HAP1与摄食有关,可能参与了食欲的调节。  相似文献   

6.
下丘脑腹内侧核(传统上称为饱中枢)受损后,可以发生丧失饱感,摄食过度,形成增剧性肥胖。它在制作实验性肥胖动物模型中占有一定位置。本文是用金硫葡萄糖(一种特异损伤下丘脑腹内侧核的药物)和谷氢酸一钠(一种特异损伤下丘脑弓状核的药物)分别制做实验性肥胖动物模型的结果。  相似文献   

7.
下丘脑神经元的电生理研究   总被引:1,自引:0,他引:1  
由于逆向鉴定、细胞内微电极,定位标记及慢性微电极等多种技术的运用,下丘脑神经元的电生理研究取得一些进展:神经内分泌大细胞具有三种自发放电型式并对本身功能有返回性影响。加压素能神经元具有渗透敏感性但与渗透压感受器非同一细胞。体温调节神经元可分为温度检测器及中间神经元两型。下丘脑腹内侧核及外侧区神经元对血中葡萄糖、游离脂酸敏感,因此提出了摄食调节的不同学说。  相似文献   

8.
采用双侧下丘脑外例区(摄食中枢)局部给药的方法,观察梭曼对大鼠摄食中枢的作用。实验结果表明,双侧下丘脑摄食中枢各注入梭曼3μg,给药当日大鼠平均摄食量下降60.9%,抑制作用持续3d,与给药前比较,差别显著(P<0.01或0.05);各注入阿托品0.1mg,平均摄食量下降41.0%,第2天后恢复正常。胆碱酪酶重活化剂HI-6与梭曼同时注入下丘脑摄食中枢,或者中枢注入梭曼后立即肌注阿托品、美加明,均可部分对抗梭曼引起的中枢性摄食抑制。说明梭曼抑制大鼠摄食中枢与乙酰胆碱酯酶及乙酰胆碱受体确实有密切关系。  相似文献   

9.
摄食控制的中枢神经化学机制   总被引:4,自引:0,他引:4  
本文回顾近年来在摄食中枢的神经化学机制方面的研究进展,较重要的有:(1)用所谓下丘脑“饱中枢”VMH粗提物的抗体和下丘脑糖感受器受体结合,进一步证明糖感受器的存在;(2)脑室或脑组织灌流的实验提示,脑脊液中存在着“饱因子”和“饿因子”;(3)对于脑内去甲肾上腺素通路在摄食控制中的作用有了较详尽的研究;(4)摄食中枢不限于下丘脑,边缘系统、纹状体和大脑皮层都参与摄食的控制;所涉及的神经化学物质也不限于去甲肾上腺素,其它单胺、氨基酸和多种神经肽也都参与。  相似文献   

10.
胆囊收缩素(CCK)既在中枢神经系统又在胃肠道内存在。据报道,由中枢或外周给予CCK可以在动物和人类引起饱感;但产生这一作用的部位一直有争论。中枢给予CCK-8(CCK羧基端八肽),推测是作用于脑内CCK受体。以前认为外周给予CCK-8通过血循环也作用于大脑,特别是下丘脑腹内侧核区域(简称VMH)。但也有资料报道,损毁大鼠两侧下丘脑VMH区后,由外周给予CCK-8仍可引起饱作用。最近G.P Smith等用大鼠观察了外周给予CCK-8引起饱作用的部位。他们先把大鼠分为两组:一组大鼠毁损两侧下丘脑VMH区;另一组大鼠施行腹腔内迷走神经切除术。然后分别向两组大鼠腹腔内注  相似文献   

11.
电刺激下丘脑穹窿周围区(PFA)的下丘脑背内侧核(DMH),下丘脑腹内侧核(VMH)与下丘脑外侧区(LHA)均可引起心肌Po2下降与血压升高,而以DMH所致的心肌Po2下降最明显。心得安可取消电刺激LHA所致的心肌Po2下降,部分取消电刺激VMH引起的心肌Po2下降,而不改变电刺激DMH所致的心肌Po2下降。DMH、VMH微量注射谷氨酸钠均可诱发升压反应和ECG-ST压低,而LHA微量注射谷氨酸却  相似文献   

12.
瘦素与中枢葡萄糖感受性神经元在摄食调节中的交互作用   总被引:1,自引:0,他引:1  
瘦素(lepfin)是新近发现的一种重要的摄食调节因子,主要通过中枢途径参与调节摄食和能量平衡。下丘脑是瘦素中枢作用的主要靶点,含有多种摄食相关神经元;其中,葡萄糖感受性神经元可感测细胞外葡萄糖水平的变化,参与摄食调控。本文即对瘦素调节摄食的中枢途径及其对中枢葡萄糖感受性神经元作用的研究进展做简要综述。  相似文献   

13.
防御警觉反应中心血管变化的机制与意义   总被引:2,自引:0,他引:2  
动物发生防御警觉反应时,心血管活动有一系列特征性变化。与此有关的中枢结构有下丘脑穹窿周围区,中脑中央灰质及延髓腹侧的巨细胞旁外侧核等。中枢内还有与防御反应相拮抗的交感抑制系统。这两系统的动态平衡,对维持交感紧张性与血压水平有重要作用。过强而持久的防御反应可能是引起某些类型高血压、心律失常等心血管疾病的一个原因。  相似文献   

14.
目的:探讨下丘脑腹内侧核Nesfatin-1对正常大鼠及糖尿病大鼠胃运动的影响及其潜在机制。方法:正常大鼠随机分为0.08μg,0.8μg,8.0μg/0.5μL Nesfatin-1组;30μg/0.5μL astressin-B组;(0.8μg Nesfatin-1+30μg astressin-B)/0.5μL组;0.5μL生理盐水(NS)组;正常羊血清+假刺激(NR+SS)组;正常羊血清+电刺激(NR+ES)组;抗NUCB2/Nesfatin-1抗体+假刺激(anti-Nn-Ab+SS)组;抗NUCB2/Nesfatin-1抗体+电刺激(anti-Nn-Ab+ES)组。制作糖尿病大鼠模型,将糖尿病大鼠随机分为0.08μg/0.5μL Nesfatin-1组;0.8μg/0.5μLNesfatin-1组;8.0μg/0.5μL Nesfatin-1组;0.5μLNS组;NR+SS组;NR+ES组;anti-Nn-Ab+SS组;anti-Nn-Ab+ES组。大鼠胃部置入感应器后腹内侧核置管,记录清醒大鼠胃运动及电刺激海马CA1区后的胃运动。结果:与生理盐水组相比,下丘脑腹内侧核注射不同浓度Nesfatin-1,大鼠胃收缩幅度和频率显著降低,下丘脑腹内侧核注射0.5μL(0.8μg Nesfatin-1+30μg astressin-B)混合液后,相比单独给予0.8μg Nesfatin-1组,大鼠胃收缩幅度和频率显著升高。大鼠下丘脑腹内侧核注射0.5μL Nesfatin-1(0.8μg),大鼠胃收缩幅度和频率显著降低,下丘脑腹内侧核注射0.5μL(0.8μg Nesfatin-1+30μg astressin-B)混合液后,相比单独给予0.8μg Nesfatin-1组,大鼠胃收缩幅度和频率显著升高。下丘脑腹内侧核注射抗NUCB2/Nesfatin-1抗体后再电刺激海马CA1区,与正常羊血清+电刺激组相比,大鼠胃收缩幅度和频率进一步增强,下丘脑腹内侧核注射抗NUCB2/Nesfatin-1抗体后再电刺激海马CA1区,与单独注射抗NUCB2/Nesfatin-1抗体+假电刺激组相比,大鼠的胃收缩幅度和频率显著增高。下丘脑腹内侧核注射抗NUCB2/Nesfatin-1抗体后再给予电刺激海马CA1区,与正常羊血清+电刺激组相比,正常大鼠和糖尿病大鼠胃运动指数均显著增加,下丘脑腹内侧核注射抗NUCB2/Nesfatin-1抗体后再电刺激海马CA1区,与单独注射抗NUCB2/Nesfatin-1抗体+假电刺激组相比,正常和糖尿病大鼠的胃运动指数均显著增高。与正常大鼠相比,电刺激海马CA1区、下丘脑腹内侧核注射抗NUCB2/Nesfatin-1抗体后再给予电刺激海马CA1区,或下丘脑腹内侧核微量注射抗NUCB2/Nesfatin-1抗体,糖尿病大鼠胃运动指数均无显著差异。结论:海马-下丘脑Nesfatin-1信号通路参与胃传入信息和胃运动调控,该作用可能与CRF系统活动有关。  相似文献   

15.
本实验用HRP注入下丘脑腹内侧核结合逆行追踪与抗FOS蛋白和抗酪氨酸羟化酶(TH)抗血清双重免疫细胞化学相结合的三重标记方法,对大鼠孤束核和延髓腹外侧区至下丘脑腹内侧核的儿茶酚胺能投射神经元在胃伤害性刺激后的c-fos表达进行了观察。本文发现孤束核和延髓腹外侧区有七种不同的标记细胞:HRP、Fos、TH单标细胞Fos/HRP、Fos/TH、HRP/TH双标细胞和Fos/HRP/TH三标细胞。上述七种标记细胞主要分布在延髓中段和尾段孤束核的内侧亚核和延髓腹外侧区以及两者之间的网状结构。HRP标记细胞以注射侧为主,对侧有少量分布。本文结果证明,大鼠孤束核、延髓腹外侧区和网状结构内儿茶酚胺能神经元有些至下丘脑腹内侧核的投射,其中一部分儿茶酚胺能神经元参与了胃伤害性刺激的传导和调控。  相似文献   

16.
用免疫组织化学方法研究脑啡肽(ENK)在极危物种朱(Nipponia nippon)脑内的分布,结合计算机图像分析仪检测免疫阳性细胞和末梢的灰度值。ENK阳性细胞、纤维和终末分布如下:发声核团有原纹状体中间区腹部、丘脑背内侧核外侧部、中脑丘间核、中脑背内侧核、延髓舌下神经核。听觉中枢有丘脑卵圆核壳区、中脑背外侧核壳区、脑桥外侧丘系腹核、上橄榄核、耳蜗核等。内分泌核团有视前区前核、旧纹状体增加部、下丘脑外侧核、下丘脑腹内侧核等。结果表明,朱脑内ENK可能对发声、听觉和下丘脑内分泌的生理活动有一定的调制作用。  相似文献   

17.
在戊巴比妥钠麻醉的猫,电刺激下丘脑外侧区(LHA)和腹内侧核(VMN)可引起小脑皮层第Ⅵ和Ⅶ小叶浦肯野细胞和非浦肯野细胞抑制性、兴奋性和抑制-兴奋性的电活动,但以抑制性活动为主;这些反应的潜伏期多数为10-20ms,但也可长达90ms;一般刺激LHA比刺激VMN更有效。刺激下丘脑所激发的小脑神经元抑制性电活动可为静脉注射组胺H_1受体阻断剂扑尔敏所阻断。本文对上述观察的可能作用作了讨论。  相似文献   

18.
在57只麻醉家兔,用同心圆双极电极刺激右侧下丘脑外侧区、前区、后区、背内侧核、腹内侧核五个不同部位,观察到均能诱发房性早搏等房性心律失常,且存在相对特异性。在用1mA 强度电刺激时,以前三个部位的诱发率较高。如预先轻度灼伤右心房后再刺激下丘脑外侧区或前区,可显著提高房性心律失常的发生率,并使诱发房颤等严重房性心律失常的机会有所增加。在同时描记股动脉血压的家兔中,观察到房性心律失常均在血压增高时出现,并以下丘脑后区、前区、外侧区的增压反应较为显著。在下丘脑外侧区增加刺激强度时,房性心律失常的发生率不随增压平均值的增加而递增,与室性心律失常不同。切断双侧颈迷走神经干后再刺激下丘脑同一部位时,原能诱发房性早搏的家兔全部不再诱发,而原能诱发以室性早搏为主的室性心律失常的部分兔仍能发生。这些结果提示,电刺激下丘脑诱发房性心律失常的机制与室性心律失常有所不同。  相似文献   

19.
电刺激麻醉兔延髓腹侧化学敏感区头端区引起潮气量(V_T)增加,呼吸频率(f)增快;电刺激压力敏感区(中间区)则使V_T减小,f亦增快。弱刺激时,两者均产生降压反应;刺激增强可诱发双相或升压反应。在出现周期性呼吸时,电刺激化学敏感区可使呼吸节律正常化、V_T增大,而电刺激压力敏感区则导致呼吸暂停。电刺激压力敏感区时,吸气时间(TI)和呼气时间(T_E)均缩短,以T_E变化更明显;由于V_T减小和T_I缩短,V_T/T_I保持相对不变,提示吸气终止的中枢阈值降低。在准备刺激的相应局部预先应用阿托品,可使电刺激化学敏感区产生的通气增强效应翻转,而对电刺激压力敏感区引起的通气抑制无明显影响;用印防己毒素则可选择性消除电刺激压力敏感区的通气抑制和降压效应。本工作表明延髓腹侧存在两个不同的中枢机制,其中化学敏感区产生的通气增强与胆碱能系统有关;压力敏感区产生的通气减弱效应与GABA系统有关。  相似文献   

20.
在这次大会上,有关心血管生理的内容较多,现就较重要的几个方面,作一简介。一、心血管活动的神经调节腹外侧延髓在心血管活动调节中的作用,近年来已日益引起重视。Caver-son 等观察到,腹外侧延髓头端的加压区神经元,直接投射到脊髓内的交感区,并接受下丘脑和外周心血管感受器来的传入信息,从而参与循环控制的整合机制。在腹外侧延髓已找到一些单位,其轴突直达孤束  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号