首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of using the nutritionally versatile bacterium Pseudomonas cepacia to produce poly-β-hydroxyalkanoic acid was evaluated. Chemostat culture showed that growth of P. cepacia became nitrogen limited when the molar carbon-to-nitrogen ratio of the medium fed into the fermentor was above 15. When grown under nitrogen limitation in batch culture with fructose as the sole source of carbon, P. cepacia accumulated poly-β-hydroxybutyric acid (PHB) in excess of 50% of the dry weight of its biomass. In batch culture, almost no PHB was produced until the onset of nitrogen limitation. After this point, PHB was produced at a linear rate of 0.12 g liter−1 h−1 (from a constant value of 1.6 g of cellular protein liter−1). PHB produced by P. cepacia had a weight-average molecular weight of 5.37 × 105 g mol−1 and a polydispersivity index of 3.9. Poly(β-hydroxybutyric acid-β-hydroxyvaleric acid) copolymer was produced with a poly-β-hydroxybutyric acid-poly-β-hydroxyvaleric acid ratio of up to 30% by weight when propionic acid was added to the medium.  相似文献   

2.
Nonvolatile residue (NVR), a waste stream from the manufacture of nylon 6′6′, contains mainly small carboxylic acids and alcohols, making it a potential fermentation substrate. Above a concentration of 1.3% (wt/vol), NVR inhibited the growth of all microorganisms tested. The most inhibitory of the major NVR components were the monocarboxylic acids (C4 to C6) and ε-caprolactone. The inhibitory effects of NVR could be avoided by using a carbon-limited chemostat. Microorganisms were found that could use all of the major NVR components as carbon and energy sources. One such organism, Pseudomonas cepacia, was grown in a carbon-limited chemostat with a medium feed concentration of 20.5 g of NVR liter−1. At a dilution rate of 0.14 h−1 the yield of biomass (Yx/s, where x is biomass produced and s is substrate used) from NVR was 18% (neglecting the water content of NVR). It was concluded that NVR would be a suitable carbon source for certain industrial fermentation processes such as the production of poly-β-hydroxybutyric acid.  相似文献   

3.
Poly-β-hydroxybutyric acid (PHB) was produced from xylose and lactose by using Pseudomonas cepacia. Approximately 50% PHB (grams of PHB total/grams of biomass total) was produced. With a laser-based fluorescent probe, β-galactosidase activity was shown to be induced in P. cepacia cells grown on lactose but not in those grown on glucose or xylose. P. cepacia has the potential to produce biodegradable thermoplastics from hemicellulosic hydrolysates and cheese whey.  相似文献   

4.
Shake flask experiments showed that Pseudomonas oleovorans began to be growth inhibited at 4.65 g of sodium octanoate liter-1, with total inhibition at 6 g liter-1. In chemostat studies with 2 g of ammonium sulfate and 8 g of octanoate liter-1 in the feed, the maximum specific growth rate was 0.51 h-1, and the maximum specific rate of poly-β-hydroxyalkanoate (PHA) production was 0.074 g of PHA g of cellular protein-1 h-1 at a dilution rate (D) of 0.25 h-1. When the specific growth rate (μ) was <0.3 h-1, the PHA composition was relatively constant with a C4/C6/C8/C10 ratio of 0.1:1.7:20.7:1.0. At μ > 0.3 h-1, a decrease in the percentage of C8 with a concomitant increase in C10 monomers as μ increased was probably due to the effects of higher concentrations of unmetabolized octanoate in the fermentor. At D = 0.24 h-1 and an increasing carbon/nitrogen ratio, the percentage of PHA in the biomass was constant at 13% (wt/wt), indicating that nitrogen limitation did not affect PHA accumulation. Under carbon-limited conditions, the yield of biomass from substrate was 0.76 g of biomass g of octanoate-1 consumed, the yield of PHA was 0.085 g of PHA g of octanoate-1 used, and 7.9 g of octanoate was consumed for each gram of NH4+ supplied. The maintenance coefficient was 0.046 g of octanoate g of biomass-1 h-1. Replacement of sodium octanoate with octanoic acid appeared to result in transport-limited growth due to the water insolubility of the acid.  相似文献   

5.
Rates of primary and bacterial secondary production in Lake Arlington, Texas, were determined. The lake is a warm (annual temperature range, 7 to 32°C), shallow, monomictic reservoir with limited macrophyte development in the littoral zone. Samples were collected from six depths within the photic zone from a site located over the deepest portion of the lake. Primary production and bacterial production were calculated from NaH14CO3 and [methyl-3H]thymidine incorporation, respectively. Peak instantaneous production ranged between 14.8 and 220.5 μg of C liter−1 h−1. There were two distinct periods of high rates of production. From May through July, production near the metalimnion exceeded 100 μg of C liter−1 h−1. During holomixis, production throughout the water column was in excess of 100 μg of C liter−1 h−1 and above 150 μg of C liter−1 h−1 near the surface. Annual areal primary production was 588 g of C m−2. Bacterial production was markedly seasonal. Growth rates during late fall through spring were typically around 0.002 h−1, and production rates were typically 5 μg of C liter−1 h−1. Growth rates were higher during warmer parts of the year and reached 0.03 h−1 by August. The maximum instantaneous rate of bacterial production was approximately 45 μg of C liter−1 h−1. Annual areal bacterial production was 125 g of C m−2. Temporal and spatial distributions of bacterial numbers and activities coincided with temporal and spatial distributions of primary production. Areal primary and bacterial secondary production were highly correlated (r = 0.77, n = 15, P < 0.002).  相似文献   

6.
Flocs consisting of Anabaena and Zoogloea spp. were used as a model system for the study of planktonic phototroph-heterotroph interactions. In CO2-limited continuous culture (3.2 μmol of NaHCO3 liter−1 h−1, 1.5 μmol of glucose liter−1 h−1, pH 8.5, D = 0.026 h−1), the biomass of the phototroph increased 8.6-fold due to association. However, direct CO2 exchange accounted for only a 3.8-fold increase. When the glucose supply rate was increased to 7.5 μmol liter−1 h−1, there was a 26-fold increase in biomass. When CO2 was supplied in excess, there was no difference due to association. In batch culture, using the same medium, the specific growth rate was 0.029 h−1 for the phototroph alone and 0.047 h−1 for the phototroph in association with the heterotroph. The stimulatory effect of the heterotroph was found only under CO2-limiting conditions and was directly related to the concentration of organic matter supplied in the medium. Both the biomass and the growth rate of the Anabaena sp. were increased by association with the Zoogloea sp. Thus, dissolved organic matter may substitute for CO2 to maximize both growth rate and biomass production by phototrophs when heterotrophic bacteria are present.  相似文献   

7.
A triphasic process was developed for the production of β dipeptides from cyanophycin (CGP) on a large scale. Phase I comprises an optimized acid extraction method for technical isolation of CGP from biomass. It yielded highly purified CGP consisting of aspartate, arginine, and a little lysine. Phase II comprises the fermentative production of an extracellular CGPase (CphEal) from Pseudomonas alcaligenes strain DIP1 on a 500-liter scale in mineral salts medium, with citrate as the sole carbon source and CGP as an inductor. During optimization, it was shown that 2 g liter−1 citrate, pH 6.5, and 37°C are ideal parameters for CphEal production. Maximum enzyme yields were obtained after induction in the presence of 50 mg liter−1 CGP or CGP dipeptides for 5 or 3 h, respectively. Aspartate at a concentration of 4 g liter−1 induced CphEal production with only about 30% efficiency in comparison to that with CGP. CphEal was purified utilizing its affinity for the substrate and its specific binding to CGP. CphEal turned out to be a serine protease with maximum activity at 50°C and at pH 7 to 8.5. Phase III comprises degradation of CGP to β-aspartate-arginine and β-aspartate-lysine dipeptides with a purity of over 99% (by thin-layer chromatography and high-performance liquid chromatography), employing a crude CphEal preparation. Optimum degradation parameters were 100 g liter−1 CGP, 10 g liter−1 crude CphEal powder, and 4 h of incubation at 50°C. The overall efficiency of phase III was 91%, while 78% (wt/wt) of the used CphEal powder with sustained activity toward CGP was recovered. The optimized process was performed with industrial materials and equipment and is applicable to any desired scale.  相似文献   

8.
The potential of Pseudomonas pseudoflava to produce poly-beta-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-beta-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h on glucose, 0.13 h on xylose, and 0.10 h on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g h on arabinose to 0.11 g g h on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of beta-hydroxybutyric and beta-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter. The beta-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter.  相似文献   

9.
An alternative method for the conversion of cheese whey lactose into ethanol has been demonstrated. With the help of continuous-culture technology, a catabolite repression-resistant mutant of Saccharomyces cerevisiae completely fermented equimolar mixtures of glucose and galactose into ethanol. The first step in this process was a computer-controlled fed-batch operation based on the carbon dioxide evolution rate of the culture. In the absence of inhibitory ethanol concentrations, this step allowed us to obtain high biomass concentrations before continuous fermentation. The continuous anaerobic process successfully incorporated a cell-recycle system to optimize the fermentor productivity. Under conditions permitting a low residual sugar concentration (≤1%), maximum productivity (13.6 g liter−1 h−1) was gained from 15% substrate in the continuous feed at a dilution rate of 0.2 h−1. Complete fermentation of highly concentrated feed solutions (20%) was also demonstrated, but only with greatly diminished fermentor productivity (5.5 g liter−1 h−1).  相似文献   

10.
Phanerochaete chrysosporium degraded purified Kraft lignin, alkali-extracted and dioxane-extracted straw lignin, and lignosulfonates at a similar rate, producing small-molecular-weight (~1,000) soluble products which comprised 25 to 35% of the original lignins. At concentrations of 1 g of lignin liter−1, 90 to 100% of the acid-insoluble Kraft, alkali straw, and dioxane straw lignins were degraded by 1 g of fungal mycelium liter−1 within an active ligninolytic period of 2 to 3 days. Cultures with biomass concentrations as low as 0.16 g liter−1 could also completely degrade 1 g of lignin liter−1 during an active period of 6 to 8 days. The absorbance at 280 nm of 2 g of lignosulfonate liter−1 increased during the first 3 days of incubation and decreased to 35% of the original value during the next 7 days. The capacity of 1 g of cells to degrade alkali-extracted straw lignin under optimized conditions was estimated to be as high as 1.0 g day−1. This degradation occurred with a simultaneous glucose consumption rate of 1.0 g day−1. When glucose or cellular energy resources were depleted, lignin degradation ceased. The ability of P. chrysosporium to degrade the various lignins in a similar manner and at very low biomass concentrations indicates that the enzymes responsible for lignin degradation are nonspecific.  相似文献   

11.
Aerobic Fermentation of D-Xylose to Ethanol by Clavispora sp   总被引:1,自引:0,他引:1       下载免费PDF全文
Eleven strains of an undescribed species of Clavispora fermented D-xylose directly to ethanol under aerobic conditions. Strain UWO(PS)83-877-1 was grown in a medium containing 2% D-xylose and 0.5% yeast extract, and the following results were obtained: ethanol yield coefficient (ethanol/D-xylose), 0.29 g g−1 (57.4% of theoretical); cell yield coefficient (dry biomass/D-xylose), 0.25 g g−1; maximum ethanol concentration, 5.9 g liter−1; maximum volumetric ethanol productivity, 0.11 g liter−1 h−1. With initial D-xylose concentrations of 40, 60, and 80 g liter−1, maximum ethanol concentrations of 8.8, 10.9, and 9.8 g liter−1 were obtained, respectively (57.2, 57.1, and 48.3% of theoretical). Ethanol was found to inhibit the fermentation of D-xylose (Kp = 0.58 g liter−1) more than the fermentation of glucose (Kp = 6.5 g liter−1). The performance of this yeast compared favorably with that reported for some other D-xylose-fermenting yeasts.  相似文献   

12.
Rates of bacterial secondary production by free-living bacterioplankton in the Okefenokee Swamp are high and comparable to reported values for a wide variety of marine and freshwater ecosystems. Bacterial production in the water column of five aquatic habitats of the Okefenokee Swamp was substantial despite the acidic (pH 3.7), low-nutrient, peat-accumulating character of the environment. Incorporation of [3H]thymidine into cold-trichloroacetic acid-insoluble material ranged from 0.03 to 2.93 nmol liter−1 day−1) and corresponded to rates of bacterial secondary production of 3.4 to 342.2 μg of carbon liter−1 day−1 (mean, 87.8 μg of carbon liter−1 day−1). Bacterial production was strongly seasonal and appeared to be coupled to annual changes in temperature and primary production. Bacterial doubling times ranged from 5 h to 15 days and were fastest during the warm months of the year, when the biomass of aquatic macrophytes was high, and slowest during the winter, when the plant biomass was reduced. The high rates of bacterial turnover in Okefenokee waters suggest that bacterial growth is an important mechanism in the transformation of dissolved organic carbon into the nutrient-rich bacterial biomass which is utilized by microconsumers.  相似文献   

13.
The spring development of both phytoplankton and bacterioplankton was investigated between 18 April and 7 May 1983 in mesotrophic Lake Erken, Sweden. By using the lake as a batch culture, our aim was to estimate, via different methods, the production of phytoplankton and bacterioplankton in the lake and to compare these production estimates with the actual increase in phytoplankton and bacterioplankton biomass. The average water temperature was 3.5°C. Of the phytoplankton biomass, >90% was the diatom Stephanodiscus hantzchii var. pusillus, by the peak of the bloom. The 14C and O2 methods of estimating primary production gave equivalent results (r = 0.999) with a photosynthetic quotient of 1.63. The theoretical photosynthetic quotient predicted from the C/NO3 N assimilation ratio was 1.57. The total integrated incorporation of [14C]bicarbonate into particulate material (>1 μm) was similar to the increase in phytoplankton carbon determined from cell counts. Bacterioplankton increased from 0.5 × 109 to 1.52 × 109 cells liter−1 (~0.5 μg of C liter−1 day−1). Estimates of bacterioplankton production from rates of [3H]thymidine incorporation were ca. 1.2 to 1.7 μg of C liter−1 day−1. Bacterial respiration, measured by a high-precision Winkler technique, was estimated as 4.8 μg of C liter−1 day−1, indicating a bacterial growth yield of 25%. The bulk of the bacterioplankton production was accounted for by algal extracellular products. Gross bacterioplankton production (production plus respiration) was 20% of gross primary production, per square meter of surface area. We found no indication that bacterioplankton production was underestimated by the [3H]thymidine incorporation method.  相似文献   

14.
Bacterioplankton abundance, [3H]thymidine incorporation, 14CO2 uptake in the dark, and fractionated primary production were measured on several occasions between June and August 1982 in eutrophic Lake Norrviken, Sweden. Bacterioplankton abundance and carbon biomass ranged from 0.5 × 109 to 2.4 × 109 cells liter−1 and 7 to 47 μg of C liter−1, respectively. The average bacterial cell volume was 0.185 μm3. [3H]thymidine incorporation into cold-trichloroacetic acid-insoluble material ranged from 12 × 10−12 to 200 × 10−12 mol liter−1 h−1. Bacterial carbon production rates were estimated to be 0.2 to 7.1 μg of C liter−1 h−1. Bacterial production estimates from [3H]thymidine incorporation and 14CO2 uptake in the dark agreed when activity was high but diverged when activity was low and when blue-green algae (cyanobacteria) dominated the phytoplankton. Size fractionation indicated negligible uptake of [3H]thymidine in the >3-μm fraction during a chrysophycean bloom in early June. We found that >50% of the 3H activity was in the >3-μm fraction in late August; this phenomenon was most likely due to Microcystis spp., their associated bacteria, or both. Over 60% of the 14CO2 uptake in the dark was attributed to algae on each sampling occasion. Algal exudate was an important carbon source for planktonic bacteria. Bacterial production was roughly 50% of primary production.  相似文献   

15.
Batch and continuous production of the extracellular heme glycoprotein chloroperoxidase (CPO) was studied with an airlift fermentor. We induced Caldariomyces fumago CMI 89362 to form pellets by transferring a small inoculum volume in preculture prior to growth in a 1-liter fermentor. Continuous replacement of the fructose-salts medium (dilution rate, 0.008 h−1) supported continuous CPO formation at an average concentration of 128 ± 10 mg of CPO liter−1 for 8 days. Optimum CPO production rates averaged 1.2 ± 0.1 mg of CPO h−1 at dilution rates below 0.033 h−1. Varying the carbohydrate content of the feed solution or the time of starting the feed did not significantly alter the amount of CPO produced. Batch fermentation in the airlift fermentor resulted in maximum CPO concentrations of 280 ± 80 mg of CPO liter−1, although on two separate occasions CPO concentrations reached 400 to 450 mg liter−1, which was double the amount obtained by free hyphae in shake flask culture.  相似文献   

16.
Bacterial biomass, metabolic condition, and activity were measured over a 16-month period in the surface sediments of the following four field sites with differing dissolved organic matter regimes: a woodlot spring seep, a meadow spring seep, a second-order stream, and a third-order stream. Total bacterial biomass was measured by lipid phosphate and epifluorescence microscopic counts (EMC), and viable biomass was measured by 14C most probable number, EMC with 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride reduction, and ATP. Bacterial metabolic condition was determined from the percentage of respiring cells, poly-β-hydroxybutyrate concentrations, and adenylate energy charge. Activity measures included 14C-lipid synthesis, 32P-phospholipid synthesis, the rate of uptake of algal lysate dissolved organic carbon, and respiration, from which biosynthesis was calculated (dissolved organic carbon uptake corrected for respiration). Total bacterial biomass (from EMC) ranged from 0.012 to 0.354 μg of C/mg of dry sediment and was usually lowest in the third-order stream. The percentage of cells respiring was less than 25% at all sites, indicating that most bacteria were dormant or dead. Adenylate energy charge was measured only in the third-order stream and was uniformly low. Poly-β-hydroxybutyrate concentrations were greater in the woodlot spring seep than in the second- and third-order streams. Uptake of algal lysate dissolved organic carbon ranged from undetectable levels to 166 mg of C · m−2 · h−1. Little community respiration could be attributed to algal lysate metabolism. Phospholipid synthesis ranged from 0.006 to 0.354 pmol · mg of dry sediment−1 · h−1. Phospholipid synthesis rates were used to estimate bacterial turnover at the study sites. An estimated 375 bacterial generations per year were produced in the woodlot spring seep, and 67 per year were produced in the third-order stream.  相似文献   

17.
Production of Extracellular Polysaccharide by Zoogloea ramigera   总被引:7,自引:2,他引:5       下载免费PDF全文
In batch cultures of Zoogloea ramigera the maximum rate of exopolysaccharide synthesis occurred in a partly growth-linked process. The exopolysaccharide was attached to the cells as a capsule. The capsules were released from the cell walls after 150 h of cultivation, which caused the fermentation broth to be highly viscous. Ultrasonication could be used to release capsular polysaccharide from the microbial cell walls. Treatment performed after 48 to 66 h of cultivation revealed exopolysaccharide concentration and apparent viscosity values in accordance with values of untreated samples withdrawn after 161 h of cultivation. The yield coefficient of exopolysaccharide on the basis of consumed glucose was in the range of 55 to 60% for batch cultivations with an initial glucose concentration of 25 g liter−1. An exopolysaccharide concentration of up to 38 g liter−1 could be attained if glucose, nitrogen, and growth factors were fed into the batch culture. The oxygen consumption rate in batch fermentations reached 25 mmol of O2 liter−1 h−1 during the exopolysaccharide synthesis phase and then decreased to values below 5 mmol of O2 liter−1 h−1 during the release phase. The fermentation broth showed pseudoplastic flow behavior, and the polysaccharide was not degraded when growth had ceased.  相似文献   

18.
The effect of the concentration of a mixture (1/1 [wt/wt]) of yeast extract and bioTrypcase (YE+bT) on the growth and physiology of a new species, Bacillus thermoamylovorans, a moderately thermophilic, non-spore-forming, lactic acid-producing bacterium isolated from palm wine, was studied. At an initial glucose concentration of 100 mM, B. thermoamylovorans growth was limited when the concentration of YE+bT was lower than 5.0 g liter−1; under these conditions, cellular yield reached a maximum value of 0.4 g of cells per g of YE+bT. Growth limitation due to deficiency in growth factors led to a significant shift in glucose metabolism towards lactate production. Lactate constituted 27.5 and 76% of the end products of glucose fermentation in media containing YE+bT at 20.0 and 1.0 g liter−1, respectively. This result markedly differed from published data for lactic bacteria, which indicated that fermentative metabolism remained homolactic regardless of the concentration of YE. Our results showed that the ratio between cellular synthesis and energy production increased with the concentration of YE+bT in the culture medium. They indicate that the industrial production of lactic acid through glucose fermentation by B. thermoamylovorans can be optimized by using a medium where glucose is present in excess and the organic additives are limiting.  相似文献   

19.
For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK), under control of the PGK1 promoter were integrated into the chromosomal HIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h−1 g (dry weight) of cells−1 (0.24 to 0.30 g h−1 g [dry weight] of cells−1) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h−1. The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h−1 g (dry weight) of cells−1 when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h−1 g (dry weight) of cells−1 when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.  相似文献   

20.
The rates of ingestion of natural bacterial assemblages by natural populations of zooplankton (>50 μm in size) were measured during a 19-day period in eutrophic Frederiksborg Slotssø, Denmark, as well as in experimental enclosures (containing 5.3 m3 of lake water). The fish and nutrients of the enclosures were manipulated. In enclosures without fish, large increases in ingestion by zooplankton >140 μm in size were found (up to 3 μg of C liter−1 h−1), compared with values less than 0.3 μg of C liter−1 h−1 in the enclosures with fish and in the open lake. Daphnia cucullata and D. galeata dominated the community of zooplankton of >140 μm. Ingestion rates for zooplankton between 50 and 140 μm decreased after a period of about 8 days, in all enclosures and in the lake, to values below 0.1 μg of C liter−1 h−1. On the last 2 sampling days, somewhat higher values were observed in the enclosures with fish present. The >50-μm zooplankton ingested 48 to 51% of the bacterial net secondary production in enclosures without fish, compared to 4% in the enclosures with added fish. Considering the sum of bacterial secondary production plus biomass change, 35 to 41% of the available bacteria were ingested by zooplankton of >50 μm in the enclosures without fish, compared with 4 to 6% in the enclosures with added fish and 21% in the open lake. Fish predation reduced the occurrence of zookplankton sized >50 μm and thus left a large proportion of the available bacteria to zooplankton sized <50 μm. In fact, there were 4.6 × 103 to 5.0 × 103 flagellates (4 to 8 μm in size) ml−1 in the enclosures with fish added as well as in the lake, compared with 0.5 × 102 to 2.3 × 102 ml−1 in the enclosures without fish. This link in the food chain was reduced when fish predation on zooplankton was eliminated and a direct route of dissolved organic matter, via the bacteria to the zooplankton, was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号