首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of carbon-13 enriched butanol with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were studied using C-13 nuclear magnetic resonance. It was found that above the gel to liquid crystal phase transition the resonance from the butanol could be resolved into two signals with similar chemical shifts but different T1 values and line widths. In contrast, only one narrow resonance was observed for ethanol, which has considerably less solubility in the lipids than butanol. Thermodynamic analyses of the effects of butanol on the phase transition temperature predict much greater solubility or butanol when the lipid is above the phase transition temperature than when it is below. It was concluded that the two butanol resonances represent two slowly exchanging populations, the free butanol in the aqueous phase and butanol dissolved in the liquid crystalline region of the lipid. No bound butanol was detected below the gel to liquid crystal phase transition. Relaxation studies were performed on the resonance of the bound butanol in DPPC and DMPC, including measurements of T1, line width, and nuclear Overhauser enhancement. Theoretical analysis of the relaxation parameters indicates that the lipid-bound alcohol has very high mobility within the fluid lipid bilayer. The data are consistent with butanol being present at the aqueous boundary or head group region of the lipid.  相似文献   

2.
The molar partition coefficients of amphiphilic additives, e.g. local anesthetics, between the aqueous phase, the liquid crystal and the gel phase of lipid membrane can be determined based on a combination of phase transition data obtained at high and low concentrations of the lipid in aqueous phase. The data obtained at high lipid concentration allow to find the phase diagram lipid-additive in the aqueous environment. The combination of this diagram with data obtained at low lipid and additive concentrations provides direct information on the concentration of anesthetics in the lipid and thus allows the calculation of the partition coefficient.  相似文献   

3.
The interaction of the galactocerebroside, N-palmitoylgalactosylsphingosine (NPGS), with cholesterol has been studied by differential scanning calorimetry (DSC) and x-ray diffraction. Thermal and structural studies demonstrate complex behavior characterized by two endothermic transitions: transition I (TI approximately equal to 50-60 degrees C) corresponding to an NPGS-cholesterol bilayer gel----bilayer liquid crystal transition II (TII where TI less than TII less than TNPGS) corresponding to an NPGS bilayer crystal (stable E form)----bilayer liquid crystal transition. For mixtures containing from 6 to 80 mol % cholesterol, x-ray diffraction studies at 22 degrees C (T less than TI) indicate two separate lamellar phases; an NPGS crystal bilayer phase and a cholesterol monohydrate phase. For cholesterol concentrations less than 50 mol % at TI less than T less than TII, NPGS-cholesterol liquid crystal bilayer and excess NPGS crystal bilayer phases are observed. For greater than 50 mol % cholesterol concentrations at these temperatures, an excess cholesterol monohydrate phase coexists with the NPGS-cholesterol liquid crystal bilayers. At T greater than TII, complete NPGS-cholesterol miscibility is only observed for less than 50 mol % cholesterol concentrations, whereas at greater than 50 mol % cholesterol an excess cholesterol phase is present. The solid phase immiscibility of cerebroside and cholesterol at low temperatures is suggested to result from preferential NPGS-NPGS associations via hydrogen bonding. The unique thermal and structural behavior of NPGS-cholesterol dispersions is contrasted with the behavior of cholesterol-phosphatidycholine and cholesterol-sphingomyelin bilayers. Thermal and structural studies of NPGS in dipalmitoylphosphatidylcholine (DPPC)/cholesterol (1:1, molar ratio) bilayers have been performed. For dispersions containing less than 20 mol % NPGS at 22 degrees C there are no observable calorimetric transitions and x-ray diffraction studies indicate complete lipid miscibility. At greater than 20 mol % NPGS, a high temperature transition is observed that is shown by x-ray diffraction studies to be due to an excess NPGS crystal bilayer----liquid crystal bilayer transition. Complete miscibility of NPGS in DPPC/cholesterol bilayers is observed at T greater than TNPGS. The properties of NPGS/DPPC/cholesterol bilayers are discussed in terms of the lipid composition of the myelin sheath.  相似文献   

4.
Physical properties of cholesteryl esters   总被引:2,自引:0,他引:2  
Cholesteryl esters, the intracellular storage form and intravascular transport form of cholesterol, can exist in crystal, liquid crystal and liquid states. The physical state of cholesteryl esters at physiologic temperatures may be a determinant of their pathogenicity. This review has surveyed saturated aliphatic cholesteryl esters of chain length 1 to 24 carbons and a series of medium-chained unsaturated cholesteryl esters from chain lengths 14 to 24 carbons. A systematic study of transition temperatures by polarizing microscopy and enthalpies by differential scanning calorimetry has provided unifying concepts concerning the phase behavior as a function of chain length and unsaturation. Neat cholesteryl esters show chain-length dependence of transition temperature and enthalpy of both the crystal and liquid crystal transitions. Double bond position along the fatty acyl chain affected stability of the liquid crystal phases; a smectic phase was not observed for any cholesteryl ester with a double bond more proximal than delta 9. 13C NMR spectroscopy in the isotropic liquid phase has provided evidence suggesting a balance of ring-ring vs. chain-chain interactions as a determinant for isotropic liquid----cholesteric vs. isotropic liquid----smectic transitions. Specifically, anisotropic molecular motions of the steroid ring are greater for cholesteryl esters forming a cholesteric phase than a smectic phase from the melt. Chain-chain interactions apparently predominate in smectic phase formation. The X-ray diffraction patterns of cholesteryl esters as a function of chain length reveal several isostructural series and known single crystal data are presented. A chain length depending on the periodicity of the smectic phase is observed which may be different for saturated vs. unsaturated esters. In summary, the phase behavior of cholesteryl ester molecules is complex and cannot be determined a priori from the phase behavior of component cholesterol and fatty acid. The data presented here should provide insight into the biological behavior of this lipid class.  相似文献   

5.
A P Mencke  M Caffrey 《Biochemistry》1991,30(9):2453-2463
By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.  相似文献   

6.
Fluorine-19 nuclear magnetic resonance spectroscopy is applied to the study of the environment of dipalmitoyl phosphatidylcholine-bound fluorinated ether anesthetics (enflurane, fluoroxene and methoxyflurane) both below and above the lipid gel to liquid crystal phase transition temperature. Line widths and spin-lattice relaxation time (T1) measurements are consistent with substantial immobilization of the lipid-bound anesethetic molecules. Heating anesthetic/lipid mixtures above the lipid transition temperature leads to narrowing of the lipid-bound anesthetic fluorine resonances accompanied by little or no change in anesthetic fluorine-19 chemical shifts, suggesting that although the mobility of the bound anesthetic increases at the higher temperature, the nature of the anesthetic-lipid interaction changes little as a result of this phase change. Differential scanning calorimetric studies of the effects of these anesthetics on the phase transition behavior of the phospholipid indicate that the regions of the bilayer in which volatile anesthetics partition at lower concentrations are different from the regions in which they partition at higher concentrations.  相似文献   

7.
Bryl K  Yoshihara K 《FEBS letters》2000,480(2-3):123-126
By fluorescence and phase properties of a 1-acyl-2-[8-(2-anthroyl)-octanoyl]-sn-glycero-3-phosphocholine probe, the influence of the chromophore on the phase transition of bacteriorhodopsin–lipid vesicles was investigated. It was observed that removal of the chromophore led to the down-shifting of the phase transition temperatures. The temperatures corresponding to the beginning and ending of the gel–liquid phase transition were also influenced. This demonstrated that the liquid phase is reached more easily when the chromophore is bleached. The results indicate that removal of the chromophore alters the protein–lipid interactions. It is suggested that this alteration might be related to the change in the lipid molecular packing.  相似文献   

8.
Electrical capacitance of the planar bilayer lipid membrane (BLM) formed from hydrogenated egg lecithin (HEL) has been studied during many passages through the phase transition temperature. In contrast to the BLM from individual synthetic phospholipids, membranes from HEL did not demonstrate any capacitance change at the phase transition temperature maximum, as measured by differential scanning calorimeter at 52 degrees C. Instead, two temperatures have been discerned by capacitance records: thickening at 42-43 degrees C and thinning at 57-59 degrees C. The first temperature region is close to the transition temperature of dipalmitoyllecithin, whereas the second is close to that of distearoyllecithin, two main components of the HEL. It was suggested that capacitance measurements were able to reveal a phase separation in the BLM from HEL which was not detected by differential scanning calorimetry. The phase transition of the BLM from the liquid crystal state to the gel state is followed by thickening of the bilayer structure, partly due to a gauche- trans transition of lipid molecules but mainly due to redistribution of the solvent n-decane.  相似文献   

9.
The structural and functional properties of reconstituted nicotinic acetylcholine receptor membranes composed of phosphatidyl choline either with or without cholesterol and/or phosphatidic acid have been examined to test the hypothesis that receptor conformational equilibria are modulated by the physical properties of the surrounding lipid environment. Spectroscopic and chemical labeling data indicate that the receptor in phosphatidylcholine alone is stabilized in a desensitized-like state, whereas the presence of either cholesterol or phosphatidic acid favors a resting-like conformation. Membranes that effectively stabilize a resting-like state exhibit a relatively large proportion of non-hydrogen-bonded lipid ester carbonyls, suggesting a relatively tight packing of the lipid head groups and thus a well ordered membrane. Functional reconstituted membranes also exhibit gel-to-liquid crystal phase transition temperatures that are higher than those of nonfunctional reconstituted membranes composed of phosphatidylcholine alone. Significantly, incorporation of the receptor into phosphatidic acid-containing membranes leads to a dramatic increase in both the lateral packing densities and the gel-to-liquid crystal phase transition temperatures of the reconstituted lipid bilayers. These results suggest a functional link between the nicotinic acetylcholine receptor and the physical properties of phosphatidic acid-containing membranes that could underlie the mechanism by which this lipid preferentially enhances receptor function.  相似文献   

10.
Fluorine-19 nuclear magnetic resonance spectroscopy is applied to the study of the environment of dipalmitoyl phosphatidylcholine-bound fluorinated ether anesthetics (enflurane, fluoroxene and methoxyflurane) both below and above the lipid gel to liquid crystal phase transition temperature. Line widths and spin-lattice relaxation time (T1) measurements are consistent with substantial immobilization of the lipid-bound anesthetic molecules. Heating anesthetic/lipid mixtures above the lipid transition temperature leads to narrowing of the lipid-bound anesthetic fluorine resonances accompanied by little or no change in anesthetic fluorine-19 chemical shifts, suggesting that although the mobility of the bound anesthetic increases at the higher temperature, the nature of the anesthetic-lipid interaction changes little as a result of this phase change. Differential scanning calorimetric studies of the effects of these anesthetics on the phase transition behavior of the phospholipid indicate that the regions of the bilayer in which volatile anesthetics partition at lower concentrations are different from the regions in which they partition at higher concentrations.  相似文献   

11.
The gel to liquid crystal phase transition of dipalmitoylphosphatidylcholine (DPPC) has been followed by the change in absorbance at 400 nm; this change is due to the change in lipid light scattering properties during the transition. The effect of sucrose on the change in absorbance during the transition of DPPC has been investigated. It has been shown that the presence of sucrose or glycerol in the multilamellar liposome suspension increases the change in absorbance due to the main transition, decreases the total absorbance, and decreases the change in absorbance due to the pretransition. This effect of sucrose and glycerol is shown to be an optical effect which is correlated with solvent index of refraction.  相似文献   

12.
Differential scanning calorimetry (DSC) has been employed to determine the effect of five commonly employed extrinsic potential-sensitive probes on phase transitions of multilamellar suspensions of L-alpha-dimyristoylphosphatidylcholine (DMPC). At mol% values of less than five, the effect of these probes on the excess heat capacity curve in the vicinity of the gel to liquid crystal phase transition can be described by an equation based on the formation of ideal solutions in both phases. Even at up to 4 mol%, these dyes only moderately reduce the enthalpy change associated with this transition, but cause a marked decrease in the size of the cooperative unit parameter. The excess heat capacity profile for diS-C3-(5) is represented by the ideal solution equation, even at 12 mol%, whereas the suspensions with the other probes present at this level have profiles covering large temperature ranges. Multiple peaks appear at the higher levels for the negatively charged oxonols V and VI, and merocyanine 540, a result consistent with the presence of well-defined microdomains or even phase separation. The enthalpy change associated with the transition near 15 degrees C involving packing in the headgroup region is decreased significantly, indicating that the probes probably affect the lipid headgroup conformation, even at low levels. The cyanine probe diS-C3-(5) causes the heat capacity profile of small unilamellar vesicles to be transformed very rapidly into one similar to that of the vortexed lipid preparations, presumably by a dye-mediated vesicle fusion process, enhanced by the surface location of this probe. All our results are consistent with diS-C3-(5) being located on the surface of the bilayer in both phases, but a penetration of the other probes into the hydrocarbon region, at least in the liquid crystal phase.  相似文献   

13.
14.
SP-B8–25 is a synthetic peptide comprising the N-terminal helix of the essential lung surfactant protein SP-B. Rat lung oxygenation studies have shown that SP-B8–25 retains some of the function of full-length SP-B. We have used deuterium nuclear magnetic resonance (2H-NMR) to examine the influence of SP-B8–25 on the mixing properties of saturated PC and unsaturated PG lipids in model mixed lipid bilayers containing dipalmitoylphosphatidylcholine (DPPC) and palmitoyl-oleoyl-phosphatidylglycerol (POPG), in a molar ratio of 7:3. In the absence of the peptide, 2H-NMR spectra of DPPC/POPG mixtures, with one or the other lipid component deuterated, indicate coexistence of large liquid crystal and gel domains over a range of about 10°C through the liquid crystal to gel transition of the bilayer. Addition of SP-B8–25 has little effect on the width of the transition but the spectra through the transition range cannot be resolved into distinct liquid crystal and gel spectral components suggesting that the peptide interferes with the tendency of the DPPC and POPG lipid components in this mixture to phase separate near the bilayer transition temperature. Quadrupole echo decay observations suggest that the peptide may also reduce differences in the correlation times for local reorientation of the two lipids. These observations suggest that SP-B8–25 promotes a more thorough mixing of saturated PC and unsaturated PG components and may be relevant to understanding the behaviour of lung surfactant material under conditions of lateral compression which might be expected to enhance the propensity for saturated and unsaturated surfactant lipid components to segregate.  相似文献   

15.
Interactions between the fluorophors diphenylhexatriene or gramicidin A′ and lipids are examined using a spin-labeled phosphatidylcholine as a fluorescence quenching probe. It is found that in phospholipid vesicles of mixed lipid composition at temperatures where phospholipids are completely in the liquid crystal phase, several different species of phosphatidylcholines are randomly distributed around the fluorophors. In vesicles of mixed lipid composition which can undergo thermally induced phase separations, the fluorescence quenching observed at lower temperatures reflects a non-random distribution of lipids around each fluorophor. This observation is explained in terms of the partition of fluorophor between a spin-labeled lipid-rich liquid crystal phase, and a spin-labeled lipiddepleted gel phase. Gramicidin A′ strongly favors partition into the liquid crystal phase, whereas diphenylhexatriene partitions about equally between the two lipid phases. A method is described utilizing fluorescence quenching for the calculation of the partition coefficient for a fluorophor. The partition coefficients so calculated are shown to be in good agreement with previously reported values derived from other methods. It is also shown that Ca2+-induced lipid phase separations can be monitored by fluorescence quenching.  相似文献   

16.
17.
Polarised optical microscopy (POM) and X-ray diffraction techniques were applied to intercellular lipids extracted from wool to study their structural arrangement in order to determine their role in the diffusion properties of wool fibre. Intercellular wool lipids (IWL) arranged as concentrated liposomes were shown to be a good intercellular lipid model, allowing their study by X-ray diffraction techniques. The results confirm that intercellular lipids of wool fibre are organised in a lamellar structure of 5.0–8.0 nm width, termed β-layer, which had been assumed to be lipids arranged as a bilayer. Structurally, internal wool lipids are distributed at least in two domains at low temperatures: an ordered phase made up of ceramides and free fatty acids (FFA) alone, arranged in crystal orthorhombic states separately, and a liquid crystal state when mixed together. At 40 °C there is a reversible phase transition produced by the melt of the crystal orthorhombic states, whereas the liquid crystal state remains until 65 °C.  相似文献   

18.
A new acoustical method for the investigation of lipid phase transition is introduced based on the measurement of the thermal acoustic radiation (TAR) inherent in lipids. The TAR of multilamellar vesicles from dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) was measured in the megahertz range and the variations in the radiation intensity during the lipid phase transition were recorded. Two types of variations are possible: if the temperature of the vesicles decreases (in the process of transition from the liquid crystalline state to the gel state) then the TAR intensity increases, and if the temperature increases (in the reverse transition) then the TAR intensity decreases. These effects are connected with an increase in the ultrasonic absorption in the vesicles under lipid phase transition. Basing on the results of the TAR investigation, a new theoretical estimate has been developed of the variation in the absorption coefficient during the lipid phase transition. In this estimate, the variation is equated to the ratio of the phase transition entropy to the gas constant.  相似文献   

19.
The enhanced permeability of lipid bilayer membranes at their gel-to-liquid phase transition has been explained using a "bilayer lipid heterogeneity" model, postulating leaky interfacial regions between still solid and melting liquid phases. The addition of lysolipid to dipalmitoylphosphatidylcholine bilayers dramatically enhances the amount of, and speed at which, encapsulated markers or drugs are released at this, already leaky, phase transition through these interfacial regions. To characterize and attempt to determine the mechanism behind lysolipid-generated permeability enhancement, dithionite permeability and doxorubicin release were measured for lysolipid and non-lysolipid, containing membranes. Rapid release of contents from lysolipid-containing membranes appears to occur through lysolipid-stabilized pores rather than a simple enhancement due to increased drug solubility in the bilayer. A dramatic enhancement in the permeability rate constant begins about two degrees below the calorimetric peak of the thermal transition, and extends several degrees past it. The maximum permeability rate constant coincides exactly with this calorimetric peak. Although some lysolipid desorption from liquid state membranes cannot be dismissed, dialyzation above T(m) and mass spectrometry analysis indicate lysolipid must, and can, remain in the membrane for the permeability enhancement, presumably as lysolipid stabilized pores in the grain boundary regions of the partially melted solid phase.  相似文献   

20.
We have utilized phosphorus nuclear magnetic resonance, which provides an excellent means of characterizing the physical state of lipids, to investigate the polymorphic phase behavior of pure dielaidoylphosphatidylethanolamine (DEPE). We have observed a sharp isotropic component in the typical bilayer and inverted hexagonal P-31 NMR spectra. This component appears in the spectra of both the bilayer and inverted hexagonal lipid phases after several cycles through the bilayer-to-hexagonal phase transition. The magnitude of the isotropic component increased as a function of the number of cycles through the transition. The appearance of this component was not a function of time at constant temperature, but only a function of the number of cycles through the transition. The isotropic component is stable at all temperatures above the gel-to-liquid crystal transition, but it abruptly disappears when the lipid is cooled below the gel-to-liquid crystal phase transition. It is suggested that this isotropic phase is similar to the isotropic phase observed in dioleoylphosphatidylethanolamine (DOPE) by x-ray diffraction and identified as a cubic phase (Shyamsunder, E., S. M. Gruner, M. W. Tate, D. C. Turner, P. T. C. So, and C. P. S. Tilcock. 1988. Biochemistry. 27:2332-2336).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号