首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Victoria blight of oats caused by the fungus Cochliobolus victoriae is of distinct interest due to the link between Victoria blight susceptibility and crown rust resistance. C. victoriae-susceptible oats were introduced into the USA as a source of the Pc2 gene for resistance to the crown rust fungus Puccinia coronata. A dominant gene (Vb) in these oats was found to condition susceptibility to Victoria blight disease and sensitivity to the C. victoriae toxin called victorin. Numerous genetic approaches to separate Vb from Pc2 have failed, suggesting that Pc2 and Vb share identity. Because Victoria blight has only been described in allohexaploid oat, which has a poorly characterized genome of 11,300 Mb, molecular genetic investigations of Vb in oat are not practical. Previously we identified a presumed Vb ortholog in Arabidopsis, called LOV. LOV confers victorin sensitivity and susceptibility to C. victoriae, and encodes a coil-coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) protein. Analysis of cereal DNA databases reveals a large array of CC-NBS-LRR genes, but no obvious LOV ortholog. Identifying a cereal ortholog of LOV will require identification and subsequent mapping of victorin sensitivity in a genetically tractable cereal plant. In this work, we surveyed barley for victorin sensitivity and identified adult-onset sensitivity to victorin in eight barley accessions. Evaluation of a doubled haploid (DH) population derived from the cross of sensitive × insensitive parents revealed a single quantitative trait locus (QTL) for victorin sensitivity in a resistance-gene-rich region on the short arm of chromosome 1H. Furthermore, enhanced victorin sensitivity observed in some DH lines suggests a background-dependent enhancement of victorin sensitivity.  相似文献   

2.
The nuclear pore complex (NPC) facilitates nucleocytoplasmic transport, a crucial process for various cellular activities. The NPC comprises ~30 nucleoporins and is well characterized in vertebrates and yeast. However, only eight plant nucleoporins have been identified, and little information is available about the complete molecular structure of plant NPCs. In this study, an interactive proteomic approach was used to identify Arabidopsis thaliana nucleoporins. A series of five cycles of interactive proteomic analysis was performed using green fluorescent protein (GFP)-tagged nucleoporins. The identified nucleoporins were then cloned and subcellular localization analyses were performed. We found that the plant NPC contains at least 30 nucleoporins, 22 of which had not been previously annotated. Surprisingly, plant nucleoporins shared a similar domain organization to their vertebrate (human) and yeast (Saccharomyces cerevisiae) counterparts. Moreover, the plant nucleoporins exhibited higher sequence homology to vertebrate nucleoporins than to yeast nucleoporins. Plant NPCs lacked seven components (NUCLEOPORIN358 [Nup358], Nup188, Nup153, Nup45, Nup37, NUCLEAR DIVISION CYCLE1, and PORE MEMBRANE PROTEIN OF 121 kD) that were present in vertebrate NPCs. However, plants possessed a nucleoporin, Nup136/Nup1, that contained Phe-Gly repeats, and sequence analysis failed to identify a vertebrate homolog for this protein. Interestingly, Nup136-GFP showed greater mobility on the nuclear envelope than did other nucleoporins, and a Nup136/Nup1 deficiency caused various defects in plant development. These findings provide valuable new information about plant NPC structure and function.  相似文献   

3.
Phosphatidylglycerol (PG) is the only phospholipid in the thylakoid membranes of chloroplasts of plants, and it is also found in extraplastidial membranes including mitochondria and the endoplasmic reticulum. Previous studies showed that lack of PG in the pgp1‐2 mutant of Arabidopsis deficient in phosphatidylglycerophosphate (PGP) synthase strongly affects thylakoid biogenesis and photosynthetic activity. In the present study, the gene encoding the enzyme for the second step of PG synthesis, PGP phosphatase, was isolated based on sequence similarity to the yeast GEP4 and Chlamydomonas PGPP1 genes. The Arabidopsis AtPGPP1 protein localizes to chloroplasts and harbors PGP phosphatase activity with alkaline pH optimum and divalent cation requirement. Arabidopsis pgpp1‐1 mutant plants contain reduced amounts of chlorophyll, but photosynthetic quantum yield remains unchanged. The absolute content of plastidial PG (34:4; total number of acyl carbons:number of double bonds) is reduced by about 1/3, demonstrating that AtPGPP1 is involved in the synthesis of plastidial PG. PGP 34:3, PGP 34:2 and PGP 34:1 lacking 16:1 accumulate in pgpp1‐1, indicating that the desaturation of 16:0 to 16:1 by the FAD4 desaturase in the chloroplasts only occurs after PGP dephosphorylation.  相似文献   

4.
There is much uncertainty as to whether plants use arogenate, phenylpyruvate, or both as obligatory intermediates in Phe biosynthesis, an essential dietary amino acid for humans. This is because both prephenate and arogenate have been reported to undergo decarboxylative dehydration in plants via the action of either arogenate (ADT) or prephenate (PDT) dehydratases; however, neither enzyme(s) nor encoding gene(s) have been isolated and/or functionally characterized. An in silico data mining approach was thus undertaken to attempt to identify the dehydratase(s) involved in Phe formation in Arabidopsis, based on sequence similarity of PDT-like and ACT-like domains in bacteria. This data mining approach suggested that there are six PDT-like homologues in Arabidopsis, whose phylogenetic analyses separated them into three distinct subgroups. All six genes were cloned and subsequently established to be expressed in all tissues examined. Each was then expressed as a Nus fusion recombinant protein in Escherichia coli, with their substrate specificities measured in vitro. Three of the resulting recombinant proteins, encoded by ADT1 (At1g11790), ADT2 (At3g07630), and ADT6 (At1g08250), more efficiently utilized arogenate than prephenate, whereas the remaining three, ADT3 (At2g27820), ADT4 (At3g44720), and ADT5 (At5g22630) essentially only employed arogenate. ADT1, ADT2, and ADT6 had k(cat)/Km values of 1050, 7650, and 1560 M(-1) S(-1) for arogenate versus 38, 240, and 16 M(-1) S(-1) for prephenate, respectively. By contrast, the remaining three, ADT3, ADT4, and ADT5, had k(cat)/Km values of 1140, 490, and 620 M(-1) S(-1), with prephenate not serving as a substrate unless excess recombinant protein (>150 microg/assay) was used. All six genes, and their corresponding proteins, are thus provisionally classified as arogenate dehydratases and designated ADT1-ADT6.  相似文献   

5.
The genes that control mammalian programmed cell death are conserved across wide evolutionary distances. Although plant cells can undergo apoptosis-like cell death, plant homologs of mammalian regulators of apoptosis have, in general, not been found. This is in part due to the lack of primary sequence conservation between animal and putative plant regulators of apoptosis. Thus, alternative approaches beyond sequence similarities are required to find functional plant homologs of apoptosis regulators. Here, we present the results of using advanced bioinformatic tools to uncover the Arabidopsis family of BAG proteins. The mammalian BAG (Bcl-2-associated athanogene) proteins are a family of chaperone regulators that modulate a number of diverse processes ranging from proliferation to growth arrest and cell death. Such proteins are distinguished by a conserved BAG domain that directly interacts with Hsp70 and Hsc70 proteins to regulate their activity. Our searches of the Arabidopsis thaliana genome sequence revealed seven homologs of the BAG protein family. We further show that plant BAG family members are also multifunctional and remarkably similar to their animal counterparts, as they regulate apoptosis-like processes ranging from pathogen attack to abiotic stress and development.  相似文献   

6.
The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall.  相似文献   

7.
Stop codon readthrough (SCR) is the process of continuation of translation beyond the stop codon, generating protein isoforms with C-terminal extensions. SCR has been observed in viruses, fungi, and multicellular organisms, including mammals. However, SCR is largely unexplored in plants. In this study, we have analyzed ribosome profiling datasets to identify mRNAs that exhibit SCR in Arabidopsis thaliana. Analyses of the ribosome density, ribosome coverage, and three-nucleotide periodicity of the ribosome profiling reads in the mRNA region downstream of the stop codon provided strong evidence for SCR in mRNAs of 144 genes. We show that SCR generated putative evolutionarily conserved nuclear localization signals, transmembrane helices, and intrinsically disordered regions in the C-terminal extensions of several of these proteins. Furthermore, gene ontology functional enrichment analysis revealed that these 144 genes belong to three major functional groups—translation, photosynthesis, and abiotic stress tolerance. Using a luminescence-based readthrough assay, we experimentally demonstrated SCR in representative mRNAs belonging to each of these functional classes. Finally, using microscopy, we show that the SCR product of one gene that contains a nuclear localization signal at the C-terminal extension, CURT1B, localizes to the nucleus as predicted. Based on these observations, we propose that SCR plays an important role in plant physiology by regulating protein localization and function.  相似文献   

8.
Aneuploidy, the relative excess or deficiency of specific chromosome types, results in gene dosage imbalance. Plants can produce viable and fertile aneuploid individuals, while most animal aneuploids are inviable or developmentally abnormal. The swarms of aneuploid progeny produced by Arabidopsis triploids constitute an excellent model to investigate the mechanisms governing dosage sensitivity and aneuploid syndromes. Indeed, genotype alters the frequency of aneuploid types within these swarms. Recombinant inbred lines that were derived from a triploid hybrid segregated into diploid and tetraploid individuals. In these recombinant inbred lines, a single locus, which we call SENSITIVE TO DOSAGE IMBALANCE (SDI), exhibited segregation distortion in the tetraploid subpopulation only. Recent progress in quantitative genotyping now allows molecular karyotyping and genetic analysis of aneuploid populations. In this study, we investigated the causes of the ploidy-specific distortion at SDI. Allele frequency was distorted in the aneuploid swarms produced by the triploid hybrid. We developed a simple quantitative measure for aneuploidy lethality and using this measure demonstrated that distortion was greatest in the aneuploids facing the strongest viability selection. When triploids were crossed to euploids, the progeny, which lack severe aneuploids, exhibited no distortion at SDI. Genetic characterization of SDI in the aneuploid swarm identified a mechanism governing aneuploid survival, perhaps by buffering the effects of dosage imbalance. As such, SDI could increase the likelihood of retaining genomic rearrangements such as segmental duplications. Additionally, in species where triploids are fertile, aneuploid survival would facilitate gene flow between diploid and tetraploid populations via a triploid bridge and prevent polyploid speciation. Our results demonstrate that positional cloning of loci affecting traits in populations containing ploidy and chromosome number variants is now feasible using quantitative genotyping approaches.  相似文献   

9.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   

10.
Despite the importance of riboflavin as the direct precursor of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), the physiologically relevant catalyst dephosphorylating the riboflavin biosynthesis pathway intermediate 5‐amino‐6‐ribitylamino‐2,4(1H,3H) pyrimidinedione 5′‐phosphate (ARPP) has not been characterized from any organism. By using as the query sequence a previously identified plastidial FMN hydrolase AtcpFHy1 (At1g79790), belonging to the haloacid dehalogenase (HAD) superfamily, seven candidates for the missing ARPP phosphatase were found, cloned, recombinantly expressed, and purified. Activity screening showed that the enzymes encoded by AtcpFHy1, At4g11570, and At4g25840 catalyze dephosphorylation of ARPP. AtcpFHy1 was renamed AtcpFHy/PyrP1, At4g11570 and At4g25840 were named AtPyrP2 and AtGpp1/PyrP3, respectively. Subcellular localization in planta indicated that AtPyrP2 was localized in plastids and AtGpp1/PyrP3 in mitochondria. Biochemical characterization of AtcpFHy/PyrP1 and AtPyrP2 showed that they have similar Km values for the substrate ARPP, with AtcpFHy/PyrP1 having higher catalytic efficiency. Screening of 21 phosphorylated substrates showed that AtPyrP2 is specific for ARPP. Molecular weights of AtcpFHy/PyrP1 and AtPyrP2 were estimated at 46 and 72 kDa, suggesting dimers. pH and temperature optima for AtcpFHy/PyrP1 and AtPyrP2 were ~7.0–8.5 and 40–50°C. T‐DNA knockout of AtcpFHy/PyrP1 did not affect the flavin profile of the transgenic plants, whereas silencing of AtPyrP2 decreased accumulation of riboflavin, FMN, and FAD. Our results strongly support AtPyrP2 as the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. The identification of this enzyme closes a long‐standing gap in understanding of the riboflavin biosynthesis in plants.  相似文献   

11.
12.
Mobley EM  Kunkel BN  Keith B 《Gene》1999,240(1):115-123
Phenylalanine, tyrosine, and tryptophan have a dual biosynthetic role in plants; they are required for protein synthesis and are also precursors to a number of aromatic secondary metabolites critical to normal development and stress responses. Whereas much has been learned in recent years about the genetic control of tryptophan biosynthesis in Arabidopsis and other plants, relatively little is known about the genetic regulation of phenylalanine and tyrosine synthesis. We have isolated, characterized and determined the expression of Arabidopsis thaliana genes encoding chorismate mutase, the enzyme catalyzing the first committed step in phenylalanine and tyrosine synthesis. Three independent Arabidopsis chorismate mutase cDNAs were isolated by functional complementation of a Saccharomyces cerevisiae mutation. Two of these cDNAs have been reported independently (Eberhard et al., 1993. FEBS 334, 233-236; Eberhard et al., 1996. Plant J. 10, 815-821), but the third (designated CM-3) represents a novel gene. The different organ-specific expression patterns of these cDNAs, their regulation in response to pathogen infiltration, as well as the different enzymatic characteristics of the proteins they encode are also described. Together, these data suggest that each isoform may play a distinct physiological role in coordinating chorismate mutase activity with developmental and environmental signals.  相似文献   

13.
The fungus Cochliobolus victoriae causes Victoria blight of oats (Avena sativa) and is pathogenic due to its production of victorin, which induces programmed cell death in sensitive plants. Victorin sensitivity has been identified in Arabidopsis thaliana and is conferred by the dominant gene LOCUS ORCHESTRATING VICTORIN EFFECTS1 (LOV1), which encodes a coiled-coil-nucleotide binding site-leucine-rich repeat protein. We isolated 63 victorin-insensitive mutants, including 59 lov1 mutants and four locus of insensitivity to victorin1 (liv1) mutants. The LIV1 gene encodes thioredoxin h5 (ATTRX5), a member of a large family of disulfide oxidoreductases. To date, very few plant thioredoxins have been assigned specific, nonredundant functions. We found that the victorin response was highly specific to ATTRX5, as the closely related ATTRX3 could only partially compensate for loss of ATTRX5, even when overexpressed. We also created chimeric ATTRX5/ATTRX3 proteins, which identified the central portion of the protein as important for conferring specificity to ATTRX5. Furthermore, we found that ATTRX5, but not ATTRX3, is highly induced in sensitive Arabidopsis following victorin treatment. Finally, we determined that only the first of the two active-site Cys residues in ATTRX5 is required for the response to victorin, suggesting that ATTRX5 function in the victorin pathway involves an atypical mechanism of action.  相似文献   

14.
15.
Kuwahara A  Kato A  Komeda Y 《Gene》2000,244(1-2):127-136
  相似文献   

16.
In order to characterize new CG-rich minisatellites present in the Arabidopsis thaliana genome, a genomic library was screened at low stringency with a probe containing nine repeated-units of a minisatellite (CMs1) previously identified. Both minisatellites and minisatellite-like elements were identified. The minisatellites, with a tandemly-repeated structure, all contain the Arabidopsis thaliana-core sequence previously defined (Tourmente et al., 1994). Both minisatellite and minisatellite-like sequences occur in the Arabidopsis genome in low copy and are weakly polymorphic between ecotypes. The genetic mapping of these markers has shown that they are dispersed on the genome. YACs clones of the CIC library carrying these minisatellites and minisatellite-like sequences were identified.Key words: Arabidopsis thaliana, minisatellites, polymorphism   相似文献   

17.
Cloning and characterization of Arabidopsis thaliana pyridoxal kinase   总被引:1,自引:0,他引:1  
Lum HK  Kwok F  Lo SC 《Planta》2002,215(5):870-879
Pyridoxal kinase (PK; EC 2.7.1.35), a key enzyme in vitamin B(6) metabolism, was cloned from Arabidopsis thaliana (L.) Heynh. and characterized. The amino acid sequence of the A. thaliana PK was found to be similar to the mammalian enzyme, with a homology of more than 40%. Characterization studies showed that the kinase is a dimeric molecule consisting of two identical subunits, each subunit having a molecular mass of approximately 35 kDa. The enzyme exhibited maximal activity at pH 6.0. Similar to the mammalian enzyme, the enzyme from A. thaliana preferred Zn(2+) instead of the commonly used Mg(2+) as the divalent cation for catalysis. Under optimal conditions, the V(max) of the enzyme was 604 nmol pyridoxal 5'-phosphate (PLP) mg(-1) min(-1), and the K(m) values for pyridoxal and ATP were 688 micro M and 98 micro M, respectively. Examination of levels of enzyme expression showed that leaves, stems, roots and flowers can generate PLP independently at similar levels. Furthermore, expression of the PK gene in A. thaliana seeds was found to start 60 h after imbibition. Results from the present study suggest that plant tissues depend on PK for the production of PLP.  相似文献   

18.
Identification of ascorbic acid-deficient Arabidopsis thaliana mutants   总被引:9,自引:0,他引:9  
Conklin PL  Saracco SA  Norris SR  Last RL 《Genetics》2000,154(2):847-856
Vitamin C (l-ascorbic acid) is a potent antioxidant and cellular reductant present at millimolar concentrations in plants. This small molecule has roles in the reduction of prosthetic metal ions, cell wall expansion, cell division, and in the detoxification of reactive oxygen generated by photosynthesis and adverse environmental conditions. However, unlike in animals, the biosynthesis of ascorbic acid (AsA) in plants is only beginning to be unraveled. The previously described AsA-deficient Arabidopsis mutant vtc1 (vitamin c-1) was recently shown to have a defect in GDP-mannose pyrophosphorylase, providing strong evidence for the recently proposed role of GDP-mannose in AsA biosynthesis. To genetically define other AsA biosynthetic loci, we have used a novel AsA assay to isolate four vtc mutants that define three additional VTC loci. We have also isolated a second mutant allele of VTC1. The four loci represented by the vtc mutant collection have been genetically characterized and mapped onto the Arabidopsis genome. The vtc mutants have differing ozone sensitivities. In addition, two of the mutants, vtc2-1 and vtc2-2, have unusually low levels of AsA in the leaf tissue of mature plants.  相似文献   

19.
20.
Zhu W  Brendel V 《Nucleic acids research》2003,31(15):4561-4572
U12-dependent introns are spliced by the minor U12-type spliceosome and occur in a variety of eukaryotic organisms, including Arabidopsis. In this study, a set of putative U12-dependent introns was compiled from a large collection of cDNA/EST- confirmed introns in the Arabidopsis thaliana genome by means of high-throughput bioinformatic analysis combined with manual scrutiny. A total of 165 U12-type introns were identified based upon stringent criteria. This number of sequences well exceeds the total number of U12-type introns previously reported for plants and allows a more thorough statistical analysis of U12-type signals. Of particular note is the discovery that the distance between the branch site adenosine and the acceptor site ranges from 10 to 39 nt, significantly longer than the previously postulated limit of 21 bp. Further analysis indicates that, in addition to the spacing constraint, the sequence context of the potential acceptor site may have an important role in 3′ splice site selection. Several alternative splicing events involving U12-type introns were also captured in this study, providing evidence that U12-dependent acceptor sites can also be recognized by the U2-type spliceosome. Furthermore, phylogenetic analysis suggests that both U12-type AT-AC and U12-type GT-AG introns occurred in Na+/H+ antiporters in a progenitor of animals and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号