首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1984,98(5):1813-1816
We studied chemotaxis to elastin peptides by bovine ligamentum nuchae fibroblasts to determine whether there is a developmental association between chemotactic responsiveness to elastin and expression of the elastin phenotype. Undifferentiated ligament cells demonstrate chemotactic responsiveness to platelet-derived growth factor and fibronectin, known chemoattractants for fibroblasts, but do not show chemotaxis to elastin peptides. After matrix-induced differentiation, however, young cells display a positive chemotactic response to elastin that persists even after the cells are removed from the matrix substratum. Matrix-induced chemotaxis to elastin could be inhibited selectively by incorporation of bromodeoxyuridine into DNA of undifferentiated cells before (but not after) contact with inducing matrix. These results show that the appearance of chemotaxis to elastin peptides parallels the onset of elastin synthesis and suggests that the acquisition of chemotactic responsiveness to elastin and expression of the elastin phenotype are affected by the same inducing elements or processes and may be closely coupled in development.  相似文献   

2.
Glucocorticoid treatment of fibroblasts from late gestation fetal bovine ligamentum nuchae resulted in a time- and dose-dependent selective increase in elastin production. Tropoelastin levels increased 2-3-fold in the presence of 10 nM dexamethasone while total protein synthesis and the rate of cell division decreased with glucocorticoid exposure. Two tropoelastin bands of molecular weights 64,500 and 61,000 were identified by immunoprecipitation and sodium dodecyl sulfate gradient-gel electrophoresis and both bands increased to an equal extent in the presence of dexamethasone. Undifferentiated cells from early-gestation animals did not synthesize elastin after hormone exposure, even though glucocorticoid receptors were demonstrated by nuclear-translocation experiments. These results indicate that glucocorticoids stimulate elastin production in elastin-producing ligament cells but do not induce elastin synthesis (differentiation) in undifferentiated cells.  相似文献   

3.
Elastin production by cultured calf pulmonary artery endothelial cells   总被引:7,自引:0,他引:7  
Calf pulmonary artery (CPA) endothelial cells synthesize and secrete soluble elastin when incubated in medium conditioned by arterial smooth muscle cells. Endothelial cell tropoelastin cross-reacts with antiserum to bovine ligamentum nuchae elastin and comigrates on SDS-PAGE with tropoelastins from fetal bovine ligamentum nuchae fibroblasts, aortic smooth muscle cells, and ear chondroblasts at an apparent molecular weight of 70,000. Endothelial cells synthesize only one-third as much elastin as these other cell types, however. Approximately 80% of the elastin synthesized by endothelial cells in confluent culture is released into the culture medium. The remaining 20% remains associated with the cell layer and is readily extractable with dilute acetic acid as un-cross-linked, 70,000-dalton tropoelastin. The addition of beta-aminopropionitrile to culture medium did not alter the ratio of tropoelastin in the medium and cell layer, suggesting that cross-linking of tropoelastin does not occur in culture. Immunofluorescent staining of confluent endothelial cell cultures with antielastin serum demonstrated elastin occurring as a web-like network of fine filaments extending throughout the extracellular space. The fibrous elastin was different in organization and distribution from fibers stained with antifibronectin serum, which were localized primarily beneath the cell layer and in regions of cell-cell contact. Extracellular matrix remaining after solubilization of cellular material with Triton X-100 stained positive for fibronectin, but not for elastin.  相似文献   

4.
Identification of multiple tropoelastins secreted by bovine cells   总被引:4,自引:0,他引:4  
High resolution gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis, cell-free translation, and elastin-specific antibodies were used to identify three tropoelastin isoforms secreted by bovine tissue and cells. Tropoelastin isolated from nuchal ligament and from conditioned culture medium or cell-matrix extracts of ligament fibroblasts and auricular chondrocytes resolved as three distinct bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with molecular weights of approximately 67,500 (tropoelastin I), 65,000 (tropoelastin II), and 62,000 (tropoelastin III). Three tropoelastin polypeptides with molecular mass 2-3 kDa higher than their corresponding tissue forms were also evident in cell-free translation products of ligamentum nuchae RNA, suggesting that each tropoelastin species is encoded by a unique mRNA. The presence of cysteine in all three tropoelastin isoforms was demonstrated by the incorporation of [35S]cysteine into newly synthesized tropoelastin polypeptides and by immunoreactivity with an antibody raised against a synthetic peptide that defines the cysteine-containing carboxyl-terminal region of tropoelastin. Immunological co-localization of the carboxyl-terminal antibody with insoluble elastin in lung vasculature and parenchyma suggests that intact tropoelastin and not a processed form is incorporated into the elastin fiber.  相似文献   

5.
The temporal expression of elastogenesis is unique among connective tissues in that elastin production occurs primarily during late fetal and early neonatal periods and is essentially fully repressed once fiber assembly is completed. To test whether elastin synthesis in adult nuchal ligament fibroblasts is permanently repressed or whether the cells retain the ability to reinitiate production upon proper stimulation, we examined in adult ligament cells various parameters known to be involved in the regulation of elastin production. Elastin synthetic capacity, as determined by the levels of steady-state tropoelastin mRNA, of adult tissue was significantly decreased relative to fetal tissue. Likewise, fibroblasts grown from explants of adult ligament had about a fourfold decrease in elastin production and elastin-specific mRNA levels. On the other hand, adult cells were similar to fetal ligament cells in that they were sensitive to glucocorticoid stimulation and demonstrated chemotactic responsiveness to elastin peptides. Since our previous studies have shown that the extracellular matrix (ECM) plays an important role in influencing elastin phenotypic expression, fetal and adult fibroblasts were grown on slices of nonviable adult ligament to test if repression of elastin production was directed by factors in ECM of adult tissues. No change in elastin synthesis was detected with either cell type grown on adult ligament, whereas both fetal and adult cells demonstrated increased elastin production in response to contact with fetal ligament. These results suggest that adult ligament ECM does not provide a metabolic signal to shut off the elastin gene and that adult cells remain responsive to external stimuli that may reinitiate high levels of elastin synthesis.  相似文献   

6.
Fetal bovine ligamentum nuchae fibroblasts maintained in culture synthesized soluble elastin but were unable to form the insoluble elastic fiber. Secreted elastin precursors accumulated in culture medium and were measured using a radioimmunoassay for elastin. When elastin production was examined in ligament tissue from fetal calves of various gestational ages, cells from tissue taken during the last trimester of development produced significantly more elastin than did cells from younger fetal tissue, with maximal elastin synthesis occurring shortly before birth. Soluble elastin was detected in ligament cells plated at low density until proliferation began to be density inhibited and the cells became quiescent. Also, soluble elastin production per cell declined with increasing population doubling or with age in culture. Cells grown in the presence of 5% fetal calf serum produced approximately four times as much soluble elastin as cells grown in serum-free medium. The addition of dexamethasone (0.1 microM) and bleomycin (1 microgram/ml) increased soluble elastin production by cultured cells 180% and 50%, respectively, whereas theophylline (5 micrograms/ml) depressed production 50% and antagonized stimulation by dexamethasone. Ascorbate (50 micrograms/ml), soybean trypsin inhibitor (1 mg/ml), insulin (100 microunits/ml), and aminoacetonitrile (50 micrograms/ml) had no effect, but cycloheximide at 10(-4) M completely inhibited soluble elastin production. In contrast to cells in culture, ligament tissue minces (ligament cells surrounded by in vivo extracellular matrix) efficiently incorporated soluble elastin precursors into insoluble, cross-linked elastin. In addition, soluble elastin production per cell (per microgram of DNA) was higher in tissue minces than elastin production by cells maintained on plastic. These results suggest a role for extracellular matrix in formation of the elastic fiber and in stabilizing elastin phenotypic expression by ligament fibroblasts. Fibroblasts from the bovine ligamentum nuchae present an excellent model for in vitro studies of elastin biosynthesis.  相似文献   

7.
Smooth muscle cells from spontaneously hypertensive rats (SHR) elaborated extracellular matrix (ECM) material in culture that was more stimulatory to growth of cells from normotensive (WKY) animals than their own matrix. Both cell types elaborated ECMs consisting of glycoconjugate material (proteoglycans, glycopeptides) elastin, and collagens, but there were differences in the relative proportions of the compounds synthesized. Cells from SHR produced an ECM richer in elastin than that synthesized by WKY derived cells (approximately 19% vs. 11%, respectively). However, the latter elaborated ECMs containing more (approximately 45% for WKY vs. 29% for SHR) glycoconjugate material than the former. The lysyloxidase-mediated cross-linking of elastin was more rapid in cultured cells from SHR animals than from their normotensive counterparts and may be as a consequence of increased substate (tropoelastin) availability in ECMs from SHR animals. The relative proportions and sulphate levels of the glycosaminoglycans associated with matrix material elaborated by the two cell types were similar. Radiolabelled glycoconjugate material was degraded by cells (SHR/WKY) when they were plated upon pre-formed ECMs, and their patterns of synthesis of new matrix was markedly altered under such conditions. New matrix material elaborated by cells plated upon ECM-coated dishes consisted predominantly of glycopeptide and proteoglycan matrix components. Epidermal growth factor promoted the incorporation of [3H]-thymidine into DNA by quiescent cells, and this was also markedly stimulated when cells were plated onto ECM-coated plasticware rather than onto plastic substratum.  相似文献   

8.
1. Insoluble elastin has been prepared by several different methods from adult bovine and calf ligamentum nuchae. Highly purified tropoelastin has been prepared from copper-deficient porcine aorta. 2. Amino acid analyses indicated that all preparations, except that obtained from calf ligamentum nuchae by using an EDTA extraction followed by collagenase digestion (preparation E6), were typical of pure elastin having high concentrations of hydrophobic and low concentrations of hydrophilic amino acids. Preparation E6 was found to contain approx. 40% collagen. 3. The determination and composition of the carbohydrates associated with these preparations is reported. With the exception of preparation E6, the insoluble elastins contained only trace amounts of neutral sugars (0.13-0.35%, w/w) and amino sugars (0.01-0.06%, w/w). The porcine tropoelastin contained virtually no carbohydrate. 4. The results suggest that carbohydrate analyses can yield valuable information about the purity of elastin preparations.  相似文献   

9.
1. The preparative Edman degradation of desmosine-containing peptides permitted the isolation of peptides C-terminal to the desmosine cross-links in bovine, porcine and human aortic elastin as well as bovine ligamentum nuchae elastin. This identifies the lysines in the tropoelastin which give rise to the desmosine cross-links. 2. The sequences from bovine aortic elastin were identical with those obtained from bovine ligamentum nuchae elastin but differed from those obtained from the other species. The most striking difference involves the occurrence of phenylalanine in bovine elastin and tyrosine in porcine and human elastin C-terminal to the desmosine cross-links. 3. The sequences of the C-terminal peptides were found to fall into two distinct classes, one starting with hydrophobic residues, the other starting with alanine. It is proposed that thehydrophobic residue prevents the enzymic oxidative deamination of the adjacent lysine e-amino group and this then contributes the nitrogen to the pyridinium ring of the cross-links.  相似文献   

10.
Synthesis and accumulation of elastin in many elastic tissues begins in the last third of fetal development, reaches a maximum shortly after birth, and then declines rapidly. For the aorta of the chick and the pig and the ligamentum nuchae and lung of the sheep, it has been shown that increased levels of elastin production with fetal development are correlated with increased levels of elastin mRNA in the tissue, measured both by cell-free translation and by hybridization to cDNA probes. In this study we examine the relationship between insoluble elastin accumulation and message levels for tropoelastin in aortic tissue of chickens during posthatching development and growth. Whether evaluated by cell-free translation or by dot blot hybridization, steady state levels of tropoelastin message increase to a maximum at 2 weeks after hatching, and then fall rapidly with further development and growth. This pattern correlates well with production of insoluble elastin by the aorta, determined either by direct measurements of synthesis or by rate of accumulation of insoluble elastin. The data indicate that the major site of regulation of elastin production is pretranslational throughout the entire period of development and growth of the chicken aorta.  相似文献   

11.
Recent studies have demonstrated that tropoelastin and elastin-derived peptides are chemotactic for fibroblasts and monocytes. To identify the chemotactic sites on elastin, we examined the chemotactic activity of Val-Gly-Val-Ala-Pro-Gly (VGVAPG), a repeating peptide in tropoelastin. We observed that VGVAPG was chemotactic for fibroblasts and monocytes, with optimal activity at approximately 10(-8) M, and that the chemotactic activity of VGVAPG was substantial (half or greater) relative to the maximum responses to other chemotactic factors such as platelet-derived growth factor for fibroblasts and formyl-methionyl-leucyl-phenylalanine for monocytes. The possibility that at least part of the chemotactic activity in tropoelastin and elastin peptides is contained in VGVAPG sequences was supported by the following: (a) polyclonal antibody to bovine elastin selectively blocked the fibroblast and monocyte chemotactic activity of both elastin-derived peptides and VGVAPG; (b) monocyte chemotaxis to VGVAPG was selectively blocked by preexposing the cells to elastin peptides; and (c) undifferentiated (nonelastin producing) bovine ligament fibroblasts, capable of chemotaxis to platelet-derived growth factor, did not show chemotactic responsiveness to either VGVAPG or elastin peptides until after matrix-induced differentiation and the onset of elastin synthesis. These studies suggest that small synthetic peptides may be able to reproduce the chemotactic activity associated with elastin-derived peptides and tropoelastin.  相似文献   

12.
The formation of a suitable extracellular matrix (ECM) that promotes cell adhesion, organization, and proliferation is essential within biomaterial scaffolds for tissue engineering applications. In this work, short elastin mimetic peptide sequences, EM-19 and EM-23, were engineered to mimic the active motifs of human elastin in hopes that they can stimulate ECM development in synthetic polymer scaffolds. Each peptide was incubated with human aortic smooth muscle cells (SMCs) and elastin and desmosine production were quantified after 48 h. EM-19 inhibited elastin production through competitive binding phenomena with the elastin binding protein (EBP), whereas EM-23, which contains an RGDS domain, induces recovery of elastin production at higher concentrations, alluding to a higher binding affinity for the integrins than for the EBP and the involvement of integrins in elastin production. Colocalization of each peptide with the elastin matrix was confirmed using immunofluorescent techniques. Our data suggest that with appropriate cell-binding motifs, we can simulate the cross-linking of tropoelastin into the developing elastin matrix using short peptide sequences. The potential for increased cell adhesion and the incorporation of elastin chains into tissue engineering scaffolds make these peptides attractive bioactive moieties that can easily be incorporated into synthetic biomaterials to induce ECM formation.  相似文献   

13.
The effects of cyclic nucleotides on elastin synthesis were studied in ligamentum nuchae fibroblasts by adding exogenous cyclic nucleotide derivatives or beta-adrenergic agents to cell culture medium. Elastin synthesis was enhanced (approximately 80%) by dibutyryl cGMP (Bt2cGMP) in concentrations ranging from 0.01 to 100 nM. Two other cGMP derivatives, 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP) and 2'-deoxy-cGMP, were also potent stimulators of elastin synthesis. In the absence of calcium, basal elastin production was substantially decreased (40% of control) and cGMP analogs no longer stimulated elastin synthesis, suggesting a role for calcium in the cGMP response. Bt2cAMP had no demonstrable effect on elastin production except at high concentrations which produced a nonspecific decrease equivalent to the decrease in total protein synthesis. Similarly, elevation of endogenous cellular cAMP levels by beta-adrenergic stimulation produced no change in elastin production. When 8-Br-cGMP was added to cells together with Bt2cAMP, cGMP-dependent stimulation of elastin production was abolished by cAMP in a dose-dependent fashion. These results suggest a coordinated means by which elastin production is controlled in ligament cells, i.e. increased cGMP levels lead to a stimulation of elastin production that is reversed by cAMP.  相似文献   

14.
Cell cultures derived from foetal bovine ligamentum nuchae accumulate extracellular fibrils morphologically identical with elastic-tissue microfibrils. Two glycoproteins synthesized by the ligament cells are closely related to the matrix microfibrils as assessed by immunological and chemical extraction techniques.  相似文献   

15.
Bone cells in vivo exist in direct contact with extracellular matrix, which regulates their basic biological processes including metabolism, development, growth and differentiation. Thus, the in vitro activity of cells cultured on tissue culture treated plastic could be different from the activity of cells cultured on their natural substrate. We selected MC3T3-E1 pre-osteoblastic cells to study the effect of extracellular matrix on cell proliferation because these cells undergo a progressive developmental sequence of proliferation and differentiation. MC3T3-E1 cells were cultured on plastic or plastic coated with ECM, fibronectin, collagen type I, BSA or poly l-lysine and their ability to proliferate was assessed by incorporation of [3H]dT or by enumeration of cells. Our results show that (1) ECM inhibits incorporation of [3H]dT by MC3T3-E1 cells; (2) collagen type I, but not BSA, poly l-lysine or fibronectin also inhibits incorporation of [3H]dT; (3) the level of ECM inhibition of [3H]dT incorporation is directly related to the number of cells cultured, but unrelated to the cell cycle distribution or endogenous thymidine content; (4) the kinetic profile of [3H]dT uptake suggest that ECM inhibits transport of [3H]dT from the extracellular medium, and (5) cell counts are similar in cultures whether cells are grown on plastic or ECM. These results suggest that decreased incorporation of [3H]dT by cells cultured on ECM is not reflective of bone cell proliferation.  相似文献   

16.
When beta-aminopropionitrile (BAPN) is added to neonatal rat aortic smooth muscle cell cultures there is a decrease in insoluble elastin accumulation with a concomitant increase in tropoelastin and tropoelastin fragments in the culture medium. The experiments described here examine the biological significance of this fragmentation. BAPN, as well as purified tropoelastin fragments isolated from spent medium of cells grown in the presence of BAPN, were added to cultures. A decrease in elastin mRNA was observed in cultures grown in the presence of BAPN and also in those cultures to which the purified tropoelastin moieties were added. These studies indicate that the inhibition of lysyl oxidase by BAPN prevents elastin crosslinking which results in an increase in tropoelastin moieties, thus leading to a down regulation of the steady state levels of elastin mRNA.  相似文献   

17.
Soluble 125I-labeled tropoelastin bound to confluent cultures of bovine ligamentum nuchae fibroblasts and to fibroblast plasma membrane preparations in a time-dependent, saturable, and reversible manner. Scatchard analysis indicates that there are approximately 2 X 10(6) binding sites/cell with a binding efficiency (Kd) of 8 X 10(-9) M. Binding of tropoelastin to cells and membranes reached equilibrium by 90 min and was reversible with 50% of specifically bound material released by 40 min. Specific binding of tropoelastin to cells pre-treated with dilute trypsin solutions was reduced significantly when compared with controls. Four polypeptides of estimated molecular masses of 67, 61, 55, and 43 kDa were obtained from detergent extracts of plasma membranes by elution affinity chromatography on elastin-Affi-Gel. Our findings establish that elastin-specific binding proteins displaying characteristics of a true receptor are present on the surface of elastin-producing cells.  相似文献   

18.
Extracellular matrix regulates expression of the TGF-beta 1 gene   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

19.
Disruption and degradation of interstitial elastic fibers are significant characteristics of pulmonary emphysema. In order to examine the responses of elastogenic cells to the conditions mimicking degradation of interstitial pulmonary elastin, rat pulmonary fibroblast cultures were used as an in vitro model. Second passage fibroblasts were divided into two different environmental situations to represent cells adjacent to and remote from the site of elastase-digested matrix. One set of cell cultures was briefly digested with pancreatic elastase. The resultant digest was then added back incrementally to the medium of elastase-digested cell cultures and to the medium of a second set of undigested cultures. Both sets of cell cultures remained viable and metabolically active during these treatments (96 h of incubation) as judged by protein synthesis, cell number, and steady-state levels of beta-actin mRNA. However, the two sets of cultures exhibited opposite responses in elastin gene expression with addition of increasing amounts of the elastase digest. The elastase-digested cultures exhibited a 200% increase in extractable soluble elastin and a 186% increase in tropoelastin mRNA with the addition of increasing amounts of the elastase digest to the medium. Conversely, the amount of soluble elastin recovered from the undigested cultures decreased 75%, and the steady-state level of tropoelastin mRNA decreased 63%. Soluble elastin peptides generated from oxalic acid treatment of purified elastin were shown to decrease tropoelastin mRNA in undigested cell cultures in the same manner as the elastase digest. Based on these data, we propose that pulmonary fibroblast elastin gene expression can be controlled coordinately by the state of the extracellular matrix and solubilized peptides derived from that matrix. Such integrated regulation may serve to localize elastin repair mechanisms.  相似文献   

20.
Insulin-like growth factor I stimulates mitogenesis in smooth muscle cells, and upregulates elastin synthesis in embryonic aortic tissue. Increased smooth muscle elastin synthesis may play an important role in vascular remodeling in chronic pulmonary hypertension. Therefore, we studied the effect of IGF-I on elastin and total protein synthesis by pulmonary arterial smooth muscle cells in vitro. Tropoelastin synthesis was measured by enzyme immunoassay, and total protein synthesis was measured by [3H]-leucine incorporation. In addition, the steady-state levels of tropoelastin mRNA were determined by slot blot hybridization. Incubation of confluent cultures with various concentrations of IGF-I resulted in a dose-dependent stimulation of elastin synthesis, with a 2.4-fold increase over control levels at 1000 ng/ml of IGF. The increase in elastin synthesis was reflected by a stimulation of the steady-state levels of tropoelastin mRNA. We conclude that IGF-I has potent elastogenic effects on vascular smooth muscle cells, and speculate that it may contribute to vascular wall remodeling in chronic hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号