首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the expression of purinoceptors in human dendritic cells, providing functional, pharmacological, and biochemical evidence that immature and mature cells express P2Y and P2X subtypes, coupled to increase in the intracellular Ca(2+), membrane depolarization, and secretion of inflammatory cytokines. The ATP-activated Ca(2+) change was biphasic, with a fast release from intracellular stores and a delayed influx across the plasma membrane. A prolonged exposure to ATP was toxic to dendritic cells that swelled, lost typical dendrites, became phase lucent, detached from the substrate, and eventually died. These changes were highly suggestive of expression of the cytotoxic receptor P2X(7), as confirmed by ability of dendritic cells to become permeant to membrane impermeant dyes such as Lucifer yellow or ethidium bromide. The P2X(7) receptor ligand 2',3'-(4-benzoylbenzoyl)-ATP was a better agonist then ATP for Ca(2+) increase and plasma membrane depolarization. Oxidized ATP, a covalent blocker of P2X receptors, and the selective P2X(7) antagonist KN-62 inhibited both permeabilization and Ca(2+) changes induced by ATP. The following purinoceptors were expressed by immature and mature dendritic cells: P2Y(1), P2Y(2), P2Y(5), P2Y(11) and P2X(1), P2X(4), P2X(7). Finally, stimulation of LPS-matured cells with ATP triggered release of IL-1 beta and TNF-alpha. Purinoceptors may provide a new avenue to modulation of dendritic cells function.  相似文献   

2.
Saino T  Matsuura M  Satoh YI 《Cell calcium》2002,32(3):153-163
Adenosine 5'-triphosphate (ATP), when released from neuronal and non-neuronal tissues, interacts with cell surface receptors produces a broad range of physiological responses. The goal of the present study was to examine the issue of whether vascular smooth muscle cells respond to ATP. To this end, the dynamics of the intracellular concentration of calcium ions ([Ca(2+)](i)) in smooth muscle cells in testicular and cerebral arterioles was examined by laser scanning confocal microscopy. ATP produced an increase in [Ca(2+)](i) in arteriole smooth muscle cells. While P1 purinoceptor agonists had no effect on this process, P2 purinoceptor agonists induced a [Ca(2+)](i) increase and a P2 purinoceptor antagonist, suramin, completely inhibited ATP-induced [Ca(2+)](i) dynamics in both arteriole smooth muscle cells.In testicular arterioles, Ca(2+) channel blockers and the removal of extracellular Ca(2+), but not thapsigargin pretreatment, abolished the ATP-induced [Ca(2+)](i) dynamics. In contrast, Ca(2+) channel blockers and the removal of extracellular Ca(2+) did not completely inhibit ATP-induced [Ca(2+)](i) dynamics in cerebral arterioles. Uridine 5'-triphosphate caused an increase in [Ca(2+)](i) only in cerebral arterioles and alpha,beta-methylene ATP caused an increase in [Ca(2+)](i) in both testicular and cerebral arterioles.We conclude that testicular arteriole smooth muscle cells respond to extracellular ATP via P2X purinoceptors and that cerebral arteriole smooth muscle cells respond via P2X and P2Y purinoceptors.  相似文献   

3.
In many brain regions, Ca(2+) influx through presynaptic P2X receptors influences GABA release from interneurones. In patch-clamp recordings of Purkinje cells (PCs) in rat cerebellar slices, broad spectrum P2 receptor antagonists, PPADS (30microM) or suramin (12microM), result in a decreased amplitude and increased failure rate of minimal evoked GABAergic synaptic currents from basket cells. The effect is mimicked by desensitizing P2X1/3-containing receptors with alpha,beta-methylene ATP. This suggests presynaptic facilitation of GABA release via P2XR-mediated Ca(2+) influx activated by endogenously released ATP. In contrast, activation of P2Y4 receptors (using UTP, 30microM, but not P2Y1 or P2Y6 receptor ligands) results in inhibition of GABA release. Immunological studies reveal the presence of most known P2Rs in >or=20% of GABAergic terminals in the cerebellum. P2X3 receptors and P2Y4 receptors occur in approximately 60% and 50% of GABAergic synaptosomes respectively and are localized presynaptically. Previous studies report that PC output is also influenced by postsynaptic purinergic receptors located on both PCs and interneurones. The high Ca(2+) permeability of the P2X receptor and the ability of ATP to influence intracellular Ca(2+) levels via P2Y receptor-mediated intracellular pathways make ATP the ideal transmitter for the multisite bidirectional modulation of the cerebellar cortical neuronal network.  相似文献   

4.
The effects of P2 receptor agonists on cell size and intracellular calcium levels, [Ca(2+)](i), was investigated using cultured endothelial cells isolated from the caudal artery of male Wistar rats. Cell size and [Ca(2+)](i) were measured using a phase-contrast and fluorescent confocal microscopic image analyzer and a Calcium Green fluorescence probe. P2Y receptor agonists, 2-methylthio ATP (2meS-ATP), ADP, UTP and ATP decreased the cell size and increased [Ca(2+)](i) in endothelial cells from rat caudal artery. However, alpha,beta-methylene ATP, a P2X receptor agonist, did not induce these responses. The decrease in size and the increase in [Ca(2+)](i), by 2meS-ATP were blocked by PPADS (P2-antagonist), suramin (P2-antagonist), thapsigargin (Ca(2+) pump inhibitor) and U-73122 (phospholipase C inhibitor). The present results show that activation of P2Y receptors, not P2X receptors, induces a decrease in cell size and an increase in [Ca(2+)](i), and the pharmacological properties of these two responses are the same. We concluded that the size of endothelial cells is regulated by P2Y receptors via intracelluar Ca(2+) derived from Ca(2+) stores.  相似文献   

5.
6.
ATP, UTP, ADP and UDP induced intracellular Ca(2+) responses and oscillations in HeLa cells that sometimes lasted over 1 h. The response is due to the activation of P2Ys, G-protein coupled ATP receptors, because the oscillations persisted for several minutes even in Ca(2+)-free solution, and suramin and PPADS, antagonists of ATP receptors, partially inhibited the response. The potency of these nucleotides varied with the culture or cell conditions, i.e. UTP was generally most potent but in some cases UDP was more potent; responses to UDP were variable while those to ATP were constant. In addition, Ca(2+) responses to ATP and UDP were additive. These findings suggested the existence of two or more subtypes of P2Ys in HeLa cells. RT-PCR experiments revealed the existence of P2Y(2), P2Y(4) and P2Y(6). Recovery from starvation (culture in FBS-free medium overnight and re-addition of FBS) increased the responses to UTP and UDP but not to ATP, suggesting that the number or activity of P2Y(6) and/or P2Y(4) receptors may increase with cell proliferation in HeLa cells.  相似文献   

7.
ATP induced a biphasic increase in the intracellular Ca(2+)concentration ([Ca(2+)](i)), an initial spike, and a subsequent plateau in A549 cells. Erythromycin (EM) suppressed the ATP-induced [Ca(2+)](i) spike but only in the presence of extracellular calcium (Ca(2+)(o)). It was ineffective against ATP- and UTP-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] formation and UTP-induced [Ca(2+)](i) spike, implying that EM perturbs Ca(2+) influx from the extracellular space rather than Ca(2+)release from intracellular Ca(2+) stores via the G protein-phospholipase C-Ins(1,4,5)P(3) pathway. A verapamil-sensitive, KCl-induced increase in [Ca(2+)](i) and the Ca(2+) influx activated by Ca(2+) store depletion were insensitive to EM. 3'-O-(4-benzoylbenzoyl)-ATP evoked an Ca(2+)(o)-dependent [Ca(2+)](i) response even in the presence of verapamil or the absence of extracellular Na(+), and this response was almost completely abolished by EM pretreatment. RT-PCR analyses revealed that P2X(4) as well as P2Y(2), P2Y(4), and P2Y(6) are coexpressed in this cell line. These results suggest that in A549 cells 1) the coexpressed P2X(4) and P2Y(2)/P2Y(4) subtypes contribute to the ATP-induced [Ca(2+)](i) spike and 2) EM selectively inhibits Ca(2+) influx through the P2X channel. This action of EM may underlie its clinical efficacy in the treatment of airway inflammation.  相似文献   

8.
Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.  相似文献   

9.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

10.
Alveolar macrophages play a crucial role in the pathogenesis of inflammatory airway diseases. By the generation and release of different inflammatory mediators they contribute to both recruitment of different leukocytes into the lung and to airway remodeling. A potent stimulus for the release of inflammatory cytokines is ATP, which mediates its cellular effects through the interaction with different membrane receptors, belonging to the P2X and P2Y families. The aim of this study was to characterize the biological properties of purinoceptors in human alveolar macrophages obtained from bronchoalveolar lavages in the context of inflammatory airway diseases. The present study is the first showing that human alveolar macrophages express mRNA for different P2 subtypes, namely P2X(1), P2X(4), P2X(5), P2X(7), P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), P2Y(13), and P2Y(14). We also showed that extracellular ATP induced Ca(2+) transients and increased IL-1beta secretion via P2X receptors. Furthermore, extracellular nucleotides inhibited production of IL-12p40 and TNF-alpha, whereas IL-6 secretion was up-regulated. In summary, our data further support the hypothesis that purinoceptors are involved in the pathogenesis of inflammatory lung diseases.  相似文献   

11.
Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.  相似文献   

12.
13.
We have investigated Ca(2+) release and receptor- and store-operated Ca(2+) influxes in Chinese hamster ovary-K1 (CHO) cells, SH-SY5Y human neuroblastoma cells and RBL-1 rat basophilic leukemia cells using Fura-2 and patch-clamp measurements. Ca(2+) release and subsequent Ni(2+)-sensitive, store-operated influx were induced by thapsigargin and stimulation of G protein-coupled receptors. The alleged noncompetitive IP3 receptor inhibitor,2-aminoethoxydiphenyl borate (2-APB) rapidly blocked a major part of the secondary influx response in CHO cells in a reversible manner. It also reduced Mn(2+) influx in response to thapsigargin. Inhibition of Ca(2+) release was also seen but this was less complete, slower in onset, less reversible, and required higher concentration of 2-APB. In RBL-1 cells, I(CRAC) activity was rapidly blocked by extracellular 2-APB whereas intracellular 2-APB was less effective. Store-operated Ca(2+) influxes were only partially blocked by 2-APB. In SH-SY5Y cells, Ca(2+) influxes were insensitive to 2-APB. Ca(2+) release in RBL-1 cells was partially sensitive but in SH-SY5Y cells the release was totally resistant to 2-APB. The results suggest, that 2-APB (1) may inhibit distinct subtypes of IP3 receptors with different sensitivity, and (2) that independently of this, it also inhibits some store-operated Ca(2+) channels via a direct, extracellular action.  相似文献   

14.
James G  Butt AM 《Cell calcium》2001,30(4):251-259
It is known that ATP acts as an extracellular messenger mediating Ca2+ signalling in glial cells. Here, the mechanisms involved in the ATP-evoked increase in glial [Ca2+]i were studied in situ, in the acutely isolated rat optic nerve. ATP and agonists for P2X (a,b-metATP) and P2Y (2MeSATP) purinoreceptors triggered raised glial [Ca2+]i, and there was no significant difference between cells identified morphologically as astrocytes and oligodendrocytes. Dose-response curves indicated that P2Y receptors were activated at nanomolar concentrations, whereas P2X purinoreceptors were only activated above 10 microM. The rank order of potency for several agonists indicated optic nerve glia expressed heterogeneous purinoreceptors, with P2Y1< or = P2Y2/4< or = P2X. The ATP evoked increase in [Ca2+]i was reversibly blocked by the P2X/Y purinoreceptor antagonist suramin (100 microM) and markedly reduced by thapsigargin (10 microM), which blocks IP3-dependent release of Ca2+ from intracellular stores. Removal of extracellular Ca2+ reduced the ATP evoked increase in [Ca2+]i and completely blocked its recovery, indicating that refilling of intracellular stores was ultimately dependent on Ca2+ influx from the extracellular milieu. The results implicate ATP as an important signal in CNS white matter astrocytes and oligodendrocytes in situ, and indicate that metabotropic P2Y purinoreceptors mobilize intracellular Ca2+ at physiological concentrations of ATP, whereas ionotropic P2X purinoreceptors induce Ca2+ influx across the plasmalemma only at high concentrations of ATP, such as occur following CNS injury.  相似文献   

15.
Extracellular ATP regulates bile formation by binding to P2 receptors on cholangiocytes and stimulating transepithelial Cl(-) secretion. However, the specific signaling pathways linking receptor binding to Cl(-) channel activation are not known. Consequently, the aim of these studies in human Mz-Cha-1 biliary cells and normal rat cholangiocyte monolayers was to assess the intracellular pathways responsible for ATP-stimulated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and membrane Cl(-) permeability. Exposure of cells to ATP resulted in a rapid increase in [Ca(2+)](i) and activation of membrane Cl(-) currents; both responses were abolished by prior depletion of intracellular Ca(2+). ATP-stimulated Cl(-) currents demonstrated mild outward rectification, reversal at E(Cl(-)), and a single-channel conductance of approximately 17 pS, where E is the equilibrium potential. The conductance response to ATP was inhibited by the Cl(-) channel inhibitors NPPB and DIDS but not the CFTR inhibitor CFTR(inh)-172. Both ATP-stimulated increases in [Ca(2+)](i) and Cl(-) channel activity were inhibited by the P2Y receptor antagonist suramin. The PLC inhibitor U73122 and the inositol 1,4,5-triphosphate (IP3) receptor inhibitor 2-APB both blocked the ATP-stimulated increase in [Ca(2+)](i) and membrane Cl(-) currents. Intracellular dialysis with purified IP3 activated Cl(-) currents with identical properties to those activated by ATP. Exposure of normal rat cholangiocyte monolayers to ATP increased short-circuit currents (I(sc)), reflecting transepithelial secretion. The I(sc) was unaffected by CFTR(inh)-172 but was significantly inhibited by U73122 or 2-APB. In summary, these findings indicate that the apical P2Y-IP3 receptor signaling complex is a dominant pathway mediating biliary epithelial Cl(-) transport and, therefore, may represent a potential target for increasing secretion in the treatment of cholestatic liver disease.  相似文献   

16.
Raqeeb A  Sheng J  Ao N  Braun AP 《Cell calcium》2011,49(4):240-248
In blood vessels, stimulation of the vascular endothelium by the Ca(2+)-mobilizing agonist ATP initiates a number of cellular events that cause relaxation of the adjacent smooth muscle layer. Although vascular endothelial cells are reported to express several subtypes of purinergic P2Y and P2X receptors, the major isoform(s) responsible for the ATP-induced generation of vasorelaxant signals in human endothelium has not been well characterized. To address this issue, ATP-evoked changes in cytosolic Ca(2+), membrane potential and acute nitric oxide production were measured in isolated human umbilical vein endothelial cells (HUVECs) and profiled using established P2X and P2Y receptor probes. Whereas selective P2X agonist (i.e. α,β-methyl ATP) and antagonists (i.e. TNP-ATP and PPADS) could neither mimic nor block the observed ATP-evoked cellular responses, the specific P2Y receptor agonist UTP functionally reproduced all the ATP-stimulated effects. Furthermore, both ATP and UTP induced intracellular Ca(2+) mobilization with comparable EC(50) values (i.e. 1-3μM). Collectively, these functional and pharmacological profiles strongly suggest that ATP acts primarily via a P2Y2 receptor sub-type in human endothelial cells. In support, P2Y2 receptor mRNA and protein were readily detected in isolated HUVECs, and siRNA-mediated knockdown of endogenous P2Y2 receptor protein significantly blunted the cytosolic Ca(2+) elevations in response to ATP and UTP, but did not affect the histamine-evoked response. In summary, these results identify the P2Y2 isoform as the major purinergic receptor in human vascular endothelial cells that mediates the cellular actions of ATP linked to vasorelaxation.  相似文献   

17.
The characteristics of spontaneous calcium (Ca(2+)) oscillation and mechanically induced Ca(2+) waves in articular chondrocytes were studied. In some, but not all, chondrocytes in sliced cartilage and primary cultures, we observed spontaneous oscillation of intracellular Ca(2+) that never spread to adjacent cells. In contrast, a mechanical stimulus to a single cell by touching with a glass rod induced an increase of intracellular Ca(2+) that spread to neighboring cells in a wave-like manner, even though there was no physical contact between the cells. This indicated the release of some paracrine factor from the mechanically stimulated cells. Application of ultrasonic vibration also induced an oscillation of intracellular Ca(2+). The application of a uridine 5'-triphosphate (UTP), UTP, induced a transient increase in intracellular Ca(2+) and the release of adenosine 5'-triphosphate (ATP) in cultured chondrocytes. A P2 receptor antagonist (suramin) and blockers of Cl(-) channels, niflumic acid and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), reduced the UTP-induced ATP release. The results indicated that Cl(-) channels were involved in the extracellular release of ATP following mechanical or P2Y receptor stimulation. Thus, ATP stimulation of P2Y receptors elicits an increase in intracellular Ca(2+), triggering further release of ATP from adjacent cells, thereby expanding the Ca(2+) wave in chondrocytes.  相似文献   

18.
Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.  相似文献   

19.
20.
Adenosine 5'-triphosphate (ATP) which is released from neuronal and non-neuronal tissues interacts with cell surface receptors to produce a broad range of physiological responses. The present study addressed the issue of whether the cells of the superior cervical ganglia (SCG) respond to ATP. To this end, the dynamics of the intracellular calcium ion concentration ([Ca2+]i) of neurons and satellite cells in intact SCG was analyzed by laser scanning confocal microscopy. ATP produced an increase of [Ca2+]i in both neurons and satellite cells; initially, ATP elicited [Ca2+]i increase in satellite cells and, subsequently, a [Ca2+]i change in neurons was observed. P1 purinoceptor agonists had no effect on this process, but P2 purinoceptor agonists induced [Ca2+]i increase and suramin totally inhibited ATP-induced [Ca2+]i dynamics in both neurons and satellite cells. In satellite cells, Ca2+ channel blockers and the removal of extracellular Ca2+, but not thapsigargin pretreatment, abolished ATP-induced [Ca2+]i dynamics. In contrast, thapsigargin pretreatment abolished ATP-induced [Ca2+]i dynamics in neurons. Reactive blue-2 inhibited the ATP-induced reaction on neurons alone. Uridine 5'-triphosphate caused a [Ca2+]i increase in neurons and alpha,beta-methylene ATP caused a [Ca2+]i increase in satellite cells. We concluded that neurons respond to extracellular ATP mainly via P2Y purinoceptors and that satellite cells respond via P2X purinoceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号