首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bryant EH  Combs LM  McCommas SA 《Genetics》1986,114(4):1213-1223
Differentiation in morphometric traits among experimental populations of the housefly subjected to an experimental bottleneck was examined for replicate lines founded with one, four or 16 pairs of flies. Differentiation among lines within a bottleneck size was significantly greater than predicted by drift in relation to the additive genetic variation for these traits within the founding population. Two models of nonadditive genetic variance were investigated to interpret these results, one involving dominance of allelic effects within loci and another incorporating multiplicative epistasis. Both models generated more variation among lines as a direct result of sampling during the bottleneck than predicted by a model with additive gene action. The pattern of differentiation among our experimental lines in relation to these models conformed more to the model incorporating epistasis. Nevertheless, it may be difficult to distinguish differentiation among lines occurring during a bottleneck as a result of nonadditive gene action from that caused by diversifying selection among lines after the bottleneck.  相似文献   

2.
The effects of a single population bottleneck of differing severity on heritability and additive genetic variance was investigated experimentally using a butterfly. An outbred laboratory stock was used to found replicate lines with one pair, three pairs and 10 pairs of adults, as well as control lines with approximately 75 effective pairs. Heritability and additive genetic variance of eight wing pattern characters and wing size were estimated using parent-offspring covariances in the base population and in all daughter lines. Individual morphological characters and principal components of the nine characters showed a consistent pattern of treatment effects in which average heritability and additive genetic variance was lower in one pair and three pair lines than in 10 pair and control lines. Observed losses in heritability and additive genetic variance were significantly greater than predicted by the neutral additive model when calculated with coefficients of inbreeding estimated from demographic parameters alone. However, use of molecular markers revealed substantially more inbreeding, generated by increased variance in family size and background selection. Conservative interpretation of a statistical analysis incorporating this previously undetected inbreeding led to the conclusion that the response to inbreeding of the morphological traits studied showed no significant departure from the neutral additive model. This result is consistent with the evidence for minimal directional dominance for these traits. In contrast, egg hatching rate in the same experimental lines showed strong inbreeding depression, increased phenotypic variance and rapid response to selection, highly indicative of an increase in additive genetic variance due to dominance variance conversion.  相似文献   

3.
Multivariate phenotypic differentiation in eight morphometric traits was examined in bottleneck lines of the housefly initiated with one, four, or 16 pairs of flies from a natural outbred population. Differentiation was assessed using a Mahalanobis' distance metric in units of additive genetic variance and covariance estimated from the ancestral population (i.e., generalized genetic distance). This distance metric was partitioned into contributions of size and shape to total distance. Bottleneck lines of all sizes diverged significantly from the ancestral line, but the direction of these shifts differed among the lines of different initial founding size. Those populations founded with single pairs diverged from the ancestral line mostly in shape; the 16-pair lines differentiated almost entirely in size, and the four-pair lines were intermediate in the relative contribution of shape to differentiation from the control. Bottlenecks serve to alter the genetic relationships among traits within the derived populations and in doing so could promote speciation by permitting differentiation of the populations along evolutionary trajectories less accessible to the base population.  相似文献   

4.
Three measures of multivariate integration were derived from both additive genetic covariance and correlation matrices estimated from parent-offspring covariances to investigate the effect of bottlenecks of different sizes on genetic integration of morphological traits in the housefly, Musca domestica L. Bottleneck lines were initiated with one, four, or 16 pairs of flies sampled from a natural outbred (control) population. Bottlenecks of intermediate size significantly increased the average genetic correlation among traits, resulting in nearly isomorphic variation among all traits in these lines. Single-pair bottlenecks significantly disrupted the trait interrelationships, and the suites of traits identified by principal components of the additive genetic correlation and covariance matrices for the control population were no longer evident in these bottleneck lines. The alteration of the genetic relationships among traits as a result of a bottleneck suggests that nonadditive components of genetic variation affecting these traits were present in the control line. We discuss the implications of nonadditive gene action, particularly epistasis, for speciation via bottlenecks.  相似文献   

5.
Traditional models of genetic drift predict a linear decrease in additive genetic variance for populations passing through a bottleneck. This perceived lack of heritable variance limits the scope of founder-effect models of speciation. We produced 55 replicate bottleneck populations maintained at two male-female pairs through four generations of inbreeding (average F = 0.39). These populations were formed from an F2 intercross of the LG/J and SM/J inbred mouse strains. Two contemporaneous control strains maintained with more than 60 mating pairs per generation were formed from this same source population. The average level of within-strain additive genetic variance for adult body weight was compared between the control and experimental lines. Additive genetic variance for adult body weight within experimental bottleneck strains was significantly higher than expected under an additive genetic model This enhancement of additive genetic variance under inbreeding is likely to be due to epistasis, which retards or reverses the loss of additive genetic variance under inbreeding for adult body weight in this population. Therefore, founder-effect speciation processes may not be constrained by a loss of heritable variance due to population bottlenecks.  相似文献   

6.
Whitlock MC  Fowler K 《Genetics》1999,152(1):345-353
We performed a large-scale experiment on the effects of inbreeding and population bottlenecks on the additive genetic and environmental variance for morphological traits in Drosophila melanogaster. Fifty-two inbred lines were created from the progeny of single pairs, and 90 parent-offspring families on average were measured in each of these lines for six wing size and shape traits, as well as 1945 families from the outbred population from which the lines were derived. The amount of additive genetic variance has been observed to increase after such population bottlenecks in other studies; in contrast here the mean change in additive genetic variance was in very good agreement with classical additive theory, decreasing proportionally to the inbreeding coefficient of the lines. The residual, probably environmental, variance increased on average after inbreeding. Both components of variance were highly variable among inbred lines, with increases and decreases recorded for both. The variance among lines in the residual variance provides some evidence for a genetic basis of developmental stability. Changes in the phenotypic variance of these traits are largely due to changes in the genetic variance.  相似文献   

7.
It is well known that standard population genetic theory predicts decreased additive genetic variance (V(a) ) following a population bottleneck and that theoretical models including interallelic and intergenic interactions indicate such loss may be avoided. However, few empirical data from multicellular model systems are available, especially regarding variance/covariance (V/CV) relationships. Here, we compare the V/CV structure of seventeen traits related to body size and composition between control (60 mating pairs/generation) and bottlenecked (2 mating pairs/generation; average F = 0.39) strains of mice. Although results for individual traits vary considerably, multivariate analysis indicates that V(a) in the bottlenecked populations is greater than expected. Traits with patterns and amounts of epistasis predictive of enhanced V(a) also show the largest deviations from additive expectations. Finally, the correlation structure of weekly weights is not significantly different between control and experimental lines but correlations between necropsy traits do differ, especially those involving the heart, kidney and tail length.  相似文献   

8.
Genetic benefits can enhance the fitness of polyandrous females through the high intrinsic genetic quality of females' mates or through the interaction between female and male genes. I used a full diallel cross, a quantitative genetics design that involves all possible crosses among a set of genetically homogeneous lines, to determine the mechanism through which polyandrous female decorated crickets (Gryllodes sigillatus) obtain genetic benefits. I measured several traits related to fitness and partitioned the phenotypic variance into components representing the contribution of additive genetic variance ('good genes'), nonadditive genetic variance (genetic compatibility), as well as maternal and paternal effects. The results reveal a significant variance attributable to both nonadditive and additive sources in the measured traits, and their influence depended on which trait was considered. The lack of congruence in sources of phenotypic variance among these fitness-related traits suggests that the evolution and maintenance of polyandry are unlikely to have resulted from one selective influence, but rather are the result of the collective effects of a number of factors.  相似文献   

9.
A population of 294 recombinant inbred lines (RIL) derived from Yuyu22, an elite maize hybrid extending broadly in China, has been constructed to investigate the genetic basis of grain yield, and associated yield components in maize. The main-effect quantitative trait loci (QTL), digenic epistatic interactions, and their interactions with the environment for grain yield and its three components were identified by using the mixed linear model approach. Thirty-two main-effect QTL and forty-four pairs of digenic epistatic interactions were detected for the four measured traits in four environments. Our results suggest that both additive effects and epistasis (additive × additive) effects are important genetic bases of grain yield and its components in the RIL population. Only 30.4% of main-effect QTL for ear length were involved in epistatic interactions. This implies that many loci in epistatic interactions may not have significant effects for traits alone but may affect trait expression by epistatic interaction with the other loci.  相似文献   

10.
Genetic theory predicts that directional selection should deplete additive genetic variance for traits closely related to fitness, and may favor the maintenance of alleles with antagonistically pleiotropic effects on fitness-related traits. Trait heritability is therefore expected to decline with the degree of association with fitness, and some genetic correlations between selected traits are expected to be negative. Here we demonstrate a negative relationship between trait heritability and association with lifetime reproductive success in a wild population of bighorn sheep (Ovis canadensis) at Ram Mountain, Alberta, Canada. Lower heritability for fitness-related traits, however, was not wholly a consequence of declining genetic variance, because those traits showed high levels of residual variance. Genetic correlations estimated between pairs of traits with significant heritability were positive. Principal component analyses suggest that positive relationships between morphometric traits constitute the main axis of genetic variation. Trade-offs in the form of negative genetic or phenotypic correlations among the traits we have measured do not appear to constrain the potential for evolution in this population.  相似文献   

11.
Selection for increased morphometric shape (ratio of wing length to thorax width) was compared between control (nonbottlenecked) populations and bottlenecked populations founded with two male–female pairs of flies. Contrary to neutral expectation, selectional response was not reduced in bottlenecked populations, and the mean realized heritabilities and additive genetic variances were higher for the bottlenecked lines than for the nonbottlenecked lines. Additive genetic variances based on these realized heritabilities were consistent with independent estimates of genetic variances based on parent–offspring covariances. Joint scaling tests applied to the crosses between selected lines and their controls revealed significant nonadditive components of genetic variance in the ancestor, which were not detected in the crosses involving bottlenecked lines. The nonbottlenecked lines responded principally by changes in one trait or the other (wing length or thorax width) but not in both, and regardless of which trait responded, larger trait size was dominant and epistatic to smaller size. Stabilizing selection for morphometric shape in the ancestor likely molded the genetic architecture to include nonadditive genetic effects.  相似文献   

12.
The heritability estimates of 25 external morphometric characters and 23 craniometric indices are obtained by use of variances in monoclonal all-female triploids and bisexual tetraploids of spined loaches (genus Cobitis, Cobitidae) collected from the same breeding biotope. Most of studied traits demonstrate low heritability confirming previous conclusion on the similarity between external morphometric characters and craniological indices in relative effects of genetic and environmental components in their total phenotypic variation. Low heritability estimates in most of external morphological traits correspond to their low diagnostic value in Cobitis species. As a whole, in spite of certain deviations, studies on clonal forms do not refute the concept on higher heritability estimates in diagnostically significant traits in comparison with traits without diagnostic values in the same taxonomic group. Low heritability in most morphometric traits more probably is resulted from their low additive genetic variation caused by strong selection of evolutionary developed specific body shape in spined loaches, because strong selection should reduce the genetic variance in body proportions to minimal size. Sex differences observed in heritability estimates should be interpreted as a result of linkage of several additive genes controlling these traits to sex chromosomes. A few characters demonstrating high heritability estimates up to 0.492–0.580 are of great interest for taxonomic and phylogenetic studies in genus Cobitis and related taxa.  相似文献   

13.
油用向日葵主要农艺性状的遗传效应及相关性研究   总被引:2,自引:0,他引:2  
根据加性-显性与环境互作的遗传模型,对6个油用向日葵自交系及其配制的9个杂交组合在2个环境下的7个农艺性状表现进行遗传分析,揭示油用向日葵主要农艺性状遗传性质、规律以及主要农艺性状对含油率的贡献率。结果表明:株高、茎粗、盘径、百粒重、籽仁率和单盘粒重等6个遗传性状主要受加性和显性共同控制,结实率的遗传以加性、显性×环境互作效应为主,籽仁率、单盘粒重以加性、显性、显性×环境互作效应为主;性状间的各项遗传相关性多以加性遗传相关为主。百粒重的净效应对籽实含油率的加性遗传方差贡献率最高,结实率的净效应对籽实含油率的显性遗传方差贡献率最高,单盘粒重对籽实含油率的加性×环境互作遗传方差的贡献率最高。  相似文献   

14.
Weller JI  Soller M  Brody T 《Genetics》1988,118(2):329-339
Linkage relationships between loci affecting quantitative traits (QTL) and marker loci were examined in an interspecific cross between Lycopersicon esculentum and Lycopersicon pimpinellifolium. Parental lines differed for six morphological markers and for four electrophoretic markers. Almost 1700 F-2 plants were scored with respect to the genetic markers and also with respect to 18 quantitative traits. Major genes affecting the quantitative traits were not found, but out of 180 possible marker x trait combinations, 85 showed significant quantitative effects associated with the genetic markers. The average marker-associated main effect was on the order of 6% of the mean value of the trait. Most of the main effects were apparently due to linkage of QTL to the marker loci rather than to pleiotropy. Fourteen of the traits showed at least one highly significant effect of opposite sign to the overall difference between the parental lines, demonstrating the ability of this design to uncover cryptic genetic variation. Significant variance and skewness effects on the quantitative traits were found to be associated with the genetic markers, suggesting the possible presence of loci affecting the variance and shape of quantitative trait distribution in a population. Most marker-associated quantitative effects showed some degree of dominance, generally in the direction of the L. pimpinellifolium parent. When the significant marker-associated effects were examined in pairs, 12% showed significant interaction effects. The results of this study illustrate the potential usefulness of this type of analysis for the detailed genetic investigation of quantitative trait variation in suitably marked populations.  相似文献   

15.
Abstract We investigated the role of the number of loci coding for a neutral trait on the release of additive variance for this trait after population bottlenecks. Different bottleneck sizes and durations were tested for various matrices of genotypic values, with initial conditions covering the allele frequency space. We used three different types of matrices. First, we extended Cheverud and Routman's model by defining matrices of "pure" epistasis for three and four independent loci; second, we used genotypic values drawn randomly from uniform, normal, and exponential distributions; and third we used two models of simple metabolic pathways leading to physiological epistasis. For all these matrices of genotypic values except the dominant metabolic pathway, we find that, as the number of loci increases from two to three and four, an increase in the release of additive variance is occurring. The amount of additive variance released for a given set of genotypic values is a function of the inbreeding coefficient, independently of the size and duration of the bottleneck. The level of inbreeding necessary to achieve maximum release in additive variance increases with the number of loci. We find that additive-by-additive epistasis is the type of epistasis most easily converted into additive variance. For a wide range of models, our results show that epistasis, rather than dominance, plays a significant role in the increase of additive variance following bottlenecks.  相似文献   

16.
Improving yield is a major objective for cotton breeding schemes, and lint yield and its three component traits (boll number, boll weight and lint percentage) are complex traits controlled by multiple genes and various environments. Association mapping was performed to detect markers associated with these four traits using 651 simple sequence repeats (SSRs). A mixed linear model including epistasis and environmental interaction was used to screen the loci associated with these four yield traits by 323 accessions of Gossypium hirsutum L. evaluated in nine different environments. 251 significant loci were detected to be associated with lint yield and its three components, including 69 loci with individual effects and all involved in epistasis interactions. These significant loci explain ∼ 62.05% of the phenotypic variance (ranging from 49.06% ∼ 72.29% for these four traits). It was indicated by high contribution of environmental interaction to the phenotypic variance for lint yield and boll numbers, that genetic effects of SSR loci were susceptible to environment factors. Shared loci were also observed among these four traits, which may be used for simultaneous improvement in cotton breeding for yield traits. Furthermore, consistent and elite loci were screened with −Log10 (P-value) >8.0 based on predicted effects of loci detected in different environments. There was one locus and 6 pairs of epistasis for lint yield, 4 loci and 10 epistasis for boll number, 15 loci and 2 epistasis for boll weight, and 2 loci and 5 epistasis for lint percentage, respectively. These results provided insights into the genetic basis of lint yield and its components and may be useful for marker-assisted breeding to improve cotton production.  相似文献   

17.
Because of anthropogenic factors many populations have been at least temporarily reduced to a very small population size. Such reductions could potentially decrease genetic variation and increase the probability of extinction. Analysis of molecular markers has shown a decrease in genetic variation but in many cases this has not reduced the ability of the population to recover from the bottleneck. This apparent paradox is resolved by a consideration of how population bottlenecks can affect additive genetic variance, the relevant measure of ability to respond to selective factors. A bottleneck has the potential to increase additive genetic variance in a population. This may result in an increase in fitness, particularly in populations of conservation concern that are small and lack genetic variation. Here we present a meta-analysis of experimental tests of this prediction using models designed to fit data that is strictly additive and data that has non-additive components. This analysis shows that additive genetic variance in a dataset dominated by morphological traits increases, on average, after a bottleneck event when the inbreeding coefficient is less than 0.3, but neither of the theoretical models alone can adequately explain this result. Because of our inability at present to predict the results of a population bottleneck in a specific case and the probability of extinction associated with small population size we caution against using bottlenecks to increase genetic variance, and thus the fitness, of endangered populations.  相似文献   

18.
The major objective of this study was to determine the possible effects of common genetic and environmental factors among 18 craniofacial anthropometric traits, with special attention to the differences between skeletal and soft-tissue related phenotypes. The studied sample consisted of 122 nuclear families living in Brussels and included 251 males and 258 females aged from 13 to 72 years. Univariate and bivariate quantitative genetic analyses were performed using a variance components procedure implemented in SOLAR software.All phenotypes were significantly influenced by additive genetic factors with heritability estimates ranging from 0.46 (nose height) to 0.72 (external biocular breadth). Sex, age and their interactions explained 7-46% of the total phenotypic variance of the traits. Bivariate analysis revealed that several traits share a common genetic and/or environmental basis while other traits show genetic and environmental independence from one another. More and greater genetic and environmental correlations were observed among skeletal phenotypes, than among soft-tissue traits and between both categories. Apart from the tissue composition, other characteristics of the craniofacial morphology such as the orientation (e.g. heights, breadths) have shown to be important factors in determining pleiotropy and common environmental effects between some pairs of traits. In conclusion, the results confirm that overall head configuration is largely determined by additive genetic effects, and that common genetic and environmental factors affecting craniofacial size and shape are stronger for the skeletal traits than for the soft-tissue traits.  相似文献   

19.
Two growth-selected lines in chickens have been developed from a single founder population by divergent selection for body weight at 56 days of age. After more than 40 generations of selection they show a nine-fold difference in body weight at selection age and large differences in growth rate, appetite, fat deposition and metabolic characteristics. We have generated a large intercross between these lines comprising more than 800 F2 birds. QTL mapping revealed 13 loci affecting growth. The most striking observation was that the allele in the high weight line in all cases was associated with enhanced growth, but each locus explained only a small proportion of the phenotypic variance using a standard QTL model (1.3-3.1%). This result is in sharp contrast to our previous study where we reported that the two-fold difference in adult body size between the red junglefowl and White Leghorn domestic chickens is explained by a small number of QTLs with large additive effects. Furthermore, no QTLs for anorexia or antibody response were detected despite large differences for these traits between the founder lines. The result is an excellent example where a large phenotypic difference between populations occurs in the apparent absence of any single locus with large phenotypic effects. The study underscores the need for powerful experimental designs in genetic studies of multifactorial traits. No QTL at all would have reached genome-wide significance using a less powerful design (e.g. approx. 200 F2 individuals) regardless of the nine-fold phenotypic difference between the founder lines for the selected trait.  相似文献   

20.
R Bürger  A Gimelfarb 《Genetics》1999,152(2):807-820
Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号