首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is still no assessment of the impact of sediment chemicals and environmental conditions on macroinvertebrates at the scale of the St. Lawrence River. In order to assess these impacts in the fluvial section of the St. Lawrence River including the Montreal harbour, the community structure of macroinvertebrates using different taxonomic aggregations (genus and family) and taxa attributes (abundance, presence–absence, indicator taxa) was assessed. The goal of the study was to determine the indicator taxa of macroinvertebrates along the fluvial continuum and relate changes in macroinvertebrate community to sediment chemical conditions and environmental characteristics of habitats using variance partitioning. This study also evaluated which taxonomic level and taxa attributes of macroinvertebrates were the most suitable for bioassessment of quality of sediments and habitat environment in the St. Lawrence River. Four different macroinvertebrate assemblages were found distributed along the fluvial continuum using either abundance or presence–absence data and genus or family levels. Indicator taxa characteristic of the different macroinvertebrate communities were associated with the sediment contamination gradient. However, habitat environmental characteristics (water masses, sulphur and DOC in sediments) had more influence on macroinvertebrate assemblages than sediment contamination. Our study confirms that family level analysis can give information comparable to the genus level analysis using presence–absence or abundance of macroinvertebrates, yet a higher number of indicator taxa were detected at the genus level.  相似文献   

2.
The influences of productivity, vegetation coverage, and benthivorous fish abundance on macroinvertebrate abundance and mean size were examined in Midwestern USA impoundments. While impoundment productivity was not strongly related to total abundance and mean size of macroinvertebrates, it was related to specific taxa. As productivity increased, Ephemeroptera and Odonata abundance decreased and Diptera abundance increased. Despite the shift in taxonomic composition, mean individual size of the macroinvertebrate community varied little with changes in impoundment productivity. Relationships between macroinvertebrates and benthivorous fish were mixed. Macroinvertebrate abundance, especially Diptera, increased with increases in bluegill Lepomis macrochirus Rafinesque abundance and decreased with increases in channel catfish Ictalurus punctatus (Rafinesque) (which are stocked annually) abundance. Fish were not related to the mean size of macroinvertebrates. Macrophyte coverage was not related to macroinvertebrate abundance or mean size. Overall, macroinvertebrate abundance was mostly related to productivity and benthivorous fish in these impoundments. Mean size of macroinvertebrates did not differ with productivity, fish abundance, or macrophyte coverage.  相似文献   

3.
Climate change is increasing the frequency of extreme fires. In 2019–2020, extreme fires burned 97 000 km2 of native vegetation in south-eastern Australia, affecting many areas of rainforest, which has historically burned less frequently. One year post-fires, we surveyed litter macroinvertebrates in 52 temperate rainforest sites. Sites had experienced increasing levels of fire severity (unburnt, medium severity and high severity). We asked how fire severity affected: (1) litter macroinvertebrate habitats; (2) the abundance of litter macroinvertebrate taxa per unit area; and (3) abundance relative to litter habitat (volumetric density). We also estimated the loss of litter macroinvertebrates across rainforests in the study region. High severity burns supported only a fifth of the litter volume and canopy cover as unburnt sites, lower soil moisture and higher herb cover. Medium burns were intermediate. Macroinvertebrate abundance declined with burn severity: high severity burns supported only 26% of the abundance in unburnt sites; medium severity burns supported 80% of that in unburnt sites. Patterns were similar for all taxa, with millipedes declining most. High severity fires resulted in up to 1.90 million fewer macroinvertebrates per hectare; 0.53 million fewer per hectare of medium burn rainforest. Across the study region, we estimate that 60 billion fewer litter macroinvertebrates persisted in temperate rainforests alone. Volumetric densities of many litter macroinvertebrate taxa in high severity burns were marginally higher than in unburnt sites, suggesting nutrients may be more available post-fire, or that persisting individuals become concentrated in the leaf litter. For less desiccation-tolerant groups (e.g., amphipods), density declines with increasing severity may reflect the combined impact of low soil moisture and reduced litter cover. Many taxa persisted following high severity fires, but declines were substantial, and taxa differed in their vulnerability. Longer-term monitoring is required to understand the recovery trajectory and impacts on ecological function.  相似文献   

4.
  • 1 We used 94 sites within the Northern Lakes and Forests ecoregion spanning Minnesota, Wisconsin and Michigan to identify environmental variables at the catchment, reach and riparian scales that influence stream macroinvertebrates. Redundancy analyses (RDA) found significantly influential variables within each scale and compared their relative importance in structuring macroinvertebrate assemblages.
  • 2 Environmental variables included landcover, geology and groundwater delivery estimates at the catchment scale, water chemistry, channel morphology and stream habitat at the reach scale, and landcover influences at three distances perpendicular to the stream at the riparian scale. Macroinvertebrate responses were characterised with 22 assemblage attributes, and the relative abundance and presence/absence of 66 taxa.
  • 3 Each scale defined macroinvertebrates along an erosional to depositional gradient. Wisconsin's macroinvertebrate index of biotic integrity, Ephemeroptera–Plecoptera–Trichoptera taxa and erosional taxa corresponded with forest streams, whereas organic pollution tolerant, Chironomidae and depositional taxa corresponded with wetland streams. Reach scale analyses defined the gradient similarly as dissolved oxygen and wide, shallow channels (erosional) opposed instream macrophytes and pool habitats (depositional). Riparian forests within 30 m of the stream coincided with an erosional assemblage and biotic integrity.
  • 4 Next, we combined all significant environmental variables across scales to compare the relative influence of each spatial scale on macroinvertebrates. Partial RDA procedures described how much of the explained variance was attributable to each spatial scale and each interrelated scale combination.
  • 5 Our results appeared consistent with the concept of hierarchical functioning of scale in which large‐scale variables restrict the potential for macroinvertebrate traits or taxa at smaller spatial scales. Catchment and reach variables were equally influential in defining assemblage attributes, whereas the reach scale was more influential in determining relative abundance and presence/absence.
  • 6 Ultimately, comprehending the relative influence of catchment and reach scale properties in structuring stream biota will assist prioritising the scale at which to rehabilitate, manage and derive policies for stream ecosystem integrity.
  相似文献   

5.
H. Smith  P.J. Wood  J. Gunn 《Hydrobiologia》2003,510(1-3):53-66
The macroinvertebrate fauna of five karst (limestone) springbrook systems with contrasting physical habitat and discharge patterns were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Clear physical differences were identified between perennial and intermittent springs and individual sampling stations. However, flow permanence, water temperature and the input of leaf litter exerted a greater influence on the aquatic invertebrate community than habitat structure. Perennial sites were characterised by a greater abundance of macroinvertebrates and greater Ephemeroptera, Plecoptera and Trichoptera (EPT) richness than intermittent sites. The fauna of all of the springbrook systems examined were dominated by relatively common and ubiquitous taxa (e.g. Gammarus pulex) although a number of taxa displaying life cycle adaptations to ephemeral aquatic habitats (e.g. Limnephilus auricula and Stenophylax permistus) were recorded at intermittent sites.  相似文献   

6.
Invasive bivalves often act as ecosystem engineers, generally causing physical alterations in the ecosystems in which they establish themselves. However, the effects of these physical alterations over benthic macroinvertebrate communities’ structure are less clear. The objective of this study was to characterize the ecological effects of the invasive bivalves Corbicula fluminea and Limnoperna fortunei on the structure of benthic macroinvertebrate communities in neo-tropical reservoirs. Three hypotheses were tested: (1) invasive bivalves act as facilitator species to other benthic macroinvertebrates, resulting in communities with higher number of species, abundance and diversity; (2) invasive bivalves change the taxonomic composition of benthic macroinvertebrate communities; (3) invasive bivalves increase the complexity of benthic macroinvertebrate communities. For that it was used data from 160 sampling sites from four reservoirs. We sampled sites once in each area, during the dry season from 2009 to 2012. The first hypothesis was rejected, as the presence of invasive bivalves significantly decreased the host benthic communities’ number of species and abundance. The second hypothesis was corroborated, as the composition of other benthic macroinvertebrates was shown to be significantly different between sites with and without invasive bivalves. We observed a shift from communities dominated by common soft substrate taxa, such as Chironomidae and Oligochaeta, to communities dominated by the invasive Gastropoda Melanoides tuberculata. The biomass data corroborated that, showing significantly higher biomass of M. tuberculata in sites with invasive bivalves, but significantly lower biomass of native species. Benthic macroinvertebrate communities presenting invasive bivalves showed significantly higher eco-exergy and specific eco-exergy, which corroborate the third hypothesis. These results suggest that while the presence of invasive bivalves limits the abundance of soft bottom taxa such as Chironomidae and Oligochaeta, it enhances benthic communities’ complexity and provide new energetic pathways to benthic communities in reservoirs. This study also suggests a scenario of invasion meltdown, as M. tuberculata was facilitated by the invasive bivalves.  相似文献   

7.
Reed invasion is a common phenomenon of open streams with disturbed riparian vegetation in river catchments. Knowledge of the effects of such vegetation change on aquatic communities is fundamental to river management. Macroinvertebrate fauna in Phragmites australis (Cav.) Trin. ex Steud. and open bank habitats were examined in three rivers in central Victoria in order to understand the effect of such littoral habitat on macroinvertebrates. Data were analysed using Partially Nested Factorial ANOVA with season, river and habitats as main effects. Habitat structure had a significant effect (p<0.05) on macroinvertebrate species richness, however this was not seasonally consistent across the three rivers. There was a significant increase (p<0.05) in macroinvertebrate taxa richness in Phragmites habitats during winter and spring seasons. Total abundance of taxa showed no consistent significant differences in the two habitats. Results of Canonical Analysis of Principle Coordinates indicated significant differences (p<0.05) in macroinvertebrate assemblages between Phragmites and bare bank habitats in all seasons. Habitat selection by taxa could be related to the microphysical environment of the habitats. This study suggests that reed beds create important littoral habitat structures which support diverse macroinvertebrate assemblages.  相似文献   

8.
Meanders are complex aquatic environments exhibiting different flow and sediment characteristics that influence macroinvertebrate distribution. Differences in macroinvertebrate composition, freshwater mussel density (mainly Castalia ambigua Lamarck, 1819) and habitat variables were investigated, using uni‐ and multivariate analyses, in two zones, the margin and thalweg, of the meanders of a 7‐km stretch of a morphologically unaltered tropical alluvial lowland river. Clear differences were found between meander zones, with greater taxonomic and functional diversity of macroinvertebrates and greater freshwater mussel densities in the meander margin. A total of 12 families of macroinvertebrates were exclusive to the meander margin, and macroinvertebrate indicators of zones were Philopotamidae and Leptoceridae (meander margin) and Chironomidae and Elmidae (meander thalweg). In the meander margin, there were no differences in macroinvertebrate abundance, and taxonomic and functional group diversity among areas with low, medium and high mussel density. Macroinvertebrate abundance did not vary between zones, but in both, abundance was associated with lower pH and higher electrical conductivity. Low shear velocity, which stabilises the river bed, high organic matter content and percentage silt in the meander margin were associated with higher taxonomic and functional macroinvertebrate diversity, as well as the presence of freshwater mussels. Natural unaltered meanders are spatially heterogeneous in both habitat and biodiversity and, similar to restored meanders, support greater macroinvertebrate taxonomic and functional diversity, as well as maintain freshwater mussel beds, mainly by stabilising the river bed. The meander margin may also be important for attracting mussel host fish that feed on macroinvertebrates and aid mussel dispersal. Thus, the meander margins, and other similar riparian habitats with low shear velocity, for example, side channels and pools, have potentially high conservation value and should be afforded due protection.  相似文献   

9.
Macrophyte complexity has been associated with high abundance and richness of macroinvertebrates. While the effect on richness has been attributed to an increase in the number of niches, the effect on abundance has been explained by a higher availability of space for small individuals, refuge, and/or food. For studying effects of complexity on macroinvertebrates, we used complementary approaches of laboratory choice and field colonization experiments, with macrophytes (Egeria densa and Elodea ernstae) and plastic imitations of contrasting fractal dimension. We investigated whether macroinvertebrates may actively select complex habitats by Hyalella sp. choice experiments. Then, we tested effects of complexity on macroinvertebrate density, biomass, richness, diversity, and body size using colonization experiments. Finally, a caging experiment was performed to study interacting effects of complexity and predation. The active choice of complex substrates by Hyalella sp., and the significant positive relationship between macrophyte fractal dimension and macroinvertebrate density support the existence of a positive effect of complexity on abundance. As macroinvertebrate length was not associated with fractal dimension, such differences could not be attributed to a higher space available for smaller invertebrates in complex plants. Finally, neither macroinvertebrate density nor size was reduced by fish predation in the Las Flores stream.  相似文献   

10.
Benthic macroinvertebrates associated with four species of macrophytes (Nymphoides peltata, Ceratophyllum demersum, Polygonum amphibium and Carex sp.) were investigated during two growing seasons (2001 and 2002) in the slow-flowing Čonakut Channel in the Kopački rit Nature Park in Croatia. A total of 31 macroinvertebrate taxa were found. C. demersum, a submerged plant with dissected leaves, supported the highest macroinvertebrate abundance, almost seven times more than N. peltata, a floating plant with undissected leaves, which harboured the lowest abundance during the research period. Chironomidae larvae (50–83%) and Oligochaeta (14–46%) were the most abundant groups recorded on all macrophyte species. Water-level fluctuation, because of its influence on the appearance and growth of aquatic vegetation, and the trophic state of water within the macrophyte stands seemed to be the main factors which affected the taxonomic composition and abundance of macroinvertebrates.  相似文献   

11.
We aimed to study whether the varying changes in predation pressure by perch (Perca fluviatilis) reflect the biomass, density, and community structure of the benthic macroinvertebrates. Prey preference is size-dependent, and overall predation pressure is density dependent, and thus the size structure of the P. fluviatilis population should affect the structure of the macroinvertebrate community, and the population density of P. fluviatilis should reflect the overall density of benthic macroinvertebrates. We sampled the littoral benthic community in a boreal lake that had been divided into two parts that were subjected to two different fishing procedures during 2007–2012 period and analyzed the macroinvertebrate diet of fish. The benthic macroinvertebrate community reflected the predation pressure. Total macroinvertebrate biomass increased during the study period in the lake division with a non-size-selective fishing procedure (NSF), i.e., all invertivorous perch size-classes targeted, but decreased in the section with negatively size-selective fishing procedure (SSF), i.e., large invertivorous individuals ≥ 16 cm were not targeted. This difference was a result of the increase in large-sized species, such as Odonata, for the NSF procedure and decrease in the SSF procedure. In contrast to total biomass, total macroinvertebrate density did not show a response to predator size structure but rather total macroinvertebrate density decreased with increasing fish density. The study demonstrates the effect of predation pressure of P. fluviatilis on benthic communities, thus highlighting the keystone predator role of the species in boreal lakes and gives more insight on the multiple effects of fish predation on littoral benthic communities.  相似文献   

12.
Dreissenid mussels (the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis ) have invaded lakes and rivers throughout North America and Europe, where they have been linked to dramatic changes in benthic invertebrate community diversity and abundance. Through a meta-analysis of published data from 47 sites, we developed statistical models of Dreissena impact on benthic macroinvertebrates across a broad range of habitats and environmental conditions. The introduction of Dreissena was generally associated with increased benthic macroinvertebrate density and taxonomic richness, and with decreased community evenness (of taxa excluding Dreissena ). However, the strength of these effects varied with sediment particle size across sites. The effects of Dreissena differed among taxonomic and functional groups of macroinvertebrates, with positive effects on the densities of scrapers and predators, particularly leeches (Hirudinea), flatworms (Turbellaria), and mayflies (Ephemeroptera). Gastropod densities increased in the presence of Dreissena , but large-bodied snail taxa tended to decline. Dreissena was associated with declines in the densities sphaeriid clams and other large filter-feeding taxa, as well as burrowing amphipods ( Diporeia spp.), but had strong positive effects on gammarid amphipods. These patterns are robust to variation in the methodology of primary studies. The effects of Dreissena are remarkably concordant with those of ecologically similar species, suggesting universality in the interactions between introduced byssally attached mussels and other macroinvertebrates.  相似文献   

13.
Dam removal is an approach for restoring rivers. However, there are increasing concerns about the impact of removal on downstream biota. We examined the short-term responses of benthic macroinvertebrates and their avian predator (Brown Dipper, Cinclus pallasii Temminck) in reaches downstream of a check dam after it was removed from a mountain stream in central Taiwan. The density and taxonomic richness of downstream macroinvertebrates decreased immediately after dam removal. The decreases were associated with scouring or burial by sediments from the upstream impoundment. Ten weeks post-removal, downstream macroinvertebrate densities, although marginally recovering, remained lower than both pre-removal and upstream densities. Substantial changes in community structure were not significantly associated with an increase in the proportion of taxa with short life spans. However, this small-scale disturbance had no strong effect on the abundance of their very mobile, avian predator. This study and other studies of dam removal have found that downstream sedimentation following dam removal can reduce macroinvertebrate densities and that they may recover over time. Thus, timescale must be considered when interpreting the consequences of dam removal, especially when the long-term goal is stream restoration.  相似文献   

14.
Buruli ulcer (BU) is an emerging, but neglected tropical disease, where there has been a reported association with disturbed aquatic habitats and proposed aquatic macroinvertebrate vectors such as biting Hemiptera. An initial step in understanding the potential role of macroinvertebrates in the ecology of BU is to better understand the entire community, not just one or two taxa, in relation to the pathogen, Mycobacterium ulcerans, at a large spatial scale. For the first time at a country-wide scale this research documents that M. ulcerans was frequently detected from environmental samples taken from BU endemic regions, but was not present in 30 waterbodies of a non-endemic region. There were significant differences in macroinvertebrate community structure and identified potential indicator taxa in relation to pathogen presence. These results suggest that specific macroinvertebrate taxa or functional metrics may potentially be used as aquatic biological indicators of M. ulcerans. Developing ecological indicators of this pathogen is a first step for understanding the disease ecology of BU and should assist future studies of transmission.  相似文献   

15.
Stream substratum restoration is a widely applied tool to improve spawning habitat quality for salmonid fishes. However, there is a lack of studies which comprehensively assess effects of the restoration on site, as well as on downstream habitats. Our study addressed effects at both locations and compared abiotic (analyses of texture, penetration resistance, oxygen concentration, redox, nitrite, nitrate, ammonium, pH, electric conductivity, temperature) with biotic (depth-specific macroinvertrebrate abundance and diversity, brown trout hatching success) indicators before and after excavation of the substratum in a highly colmated brown trout spawning site. Strong improvements of hyporheic water conditions (increased oxygen supply and redox potential, reduced concentrations of nitrite and ammonium) as well as ~50 % reductions of substratum compaction and fine sediment content were observed 1 day after the restoration measure. Improvements of habitat quality were still detectable 3 months after treatment. Consequently, the hatching success of Salmo trutta eggs increased from 0 % to 77 % after the restoration. Short-term decrease of macroinvertebrate abundance (from 13.1 to 3.9 macroinvertebrates/kg substratum) was observed within the hyporheic zone of the restoration site, but after 3 months, the number of taxa increased from 13 to 22 taxa and abundance reached 17.9 macroinvertebrates/kg. Significantly increased fine sediment deposition was detected within 1 km downstream of the restoration site and may negatively affect these habitats. Trade-offs between positive effects at restored sites and negative effects in downstream habitats need to be considered for a comprehensive evaluation of stream substratum restoration.  相似文献   

16.
Macrophytes are common inhabitants of lotic environments and, depending on their morphological traits, possess adaptations that provide shelter to aquatic invertebrates against strong river flow and predators. They may also be used as a food source by macroinvertebrates. The main goal of this study was to determine the relationship between the red alga Paralemanea mexicana and its role as a shelter and/or food source for lotic macroinvertebrates. We also conducted research on the role of microhabitat and morphological variations of the alga in determining macroinvertebrate taxon abundance, diversity, and functional group composition in a high-current velocity river. Results showed that changes in cover and morphology of P. mexicana were mostly correlated with river current velocity, irradiance, and seasonal variation. In turn, these were related to changes in abundance and diversity of the associated macroinvertebrate community. In addition, six macroinvertebrate functional feeding groups were evaluated for associations with the red alga: filtering and gathering collectors, piercers, scrapers, herbivore shredders, and predators. The results showed that the Trichoptera Hydroptilidae genera Ochrotrichia and Metrichia use P. mexicana as a food source and case-building material. The Trichoptera Glossosomatidae Mortoniella uses the alga as a substrate. The biotic interactions between P. mexicana and associated macroinvertebrates reveal the importance of macrophytes as purveyors of substrate, as food and shelter for macroinvertebrates, and also as promoters of macroinvertebrate community diversity. In addition, it was shown that macroinvertebrate herbivory likely facilitates vegetative propagation of the red alga through increased release and germination of carpospores and new gametophytes.  相似文献   

17.
1. We examined small, fishless headwater streams to determine whether transport of macroinvertebrates into the littoral zone of an oligotrophic lake augmented food availability for Cottus asper, an abundant predatory fish in our study system. We sampled fish and macroinvertebrates during the recruitment and growth season of 2 years, either monthly (2004) or bi‐monthly (2005), to observe whether stream inputs increased prey availability and whether variation in total macroinvertebrate biomass was tracked by fish. 2. Observations from eight headwater streams indicated that streams did not increase the total macroinvertebrate biomass in the shallow littoral zone at stream inflows, relative to adjacent plots without stream inputs (controls). The taxonomic composition of stream macroinvertebrates drifting toward the lake differed from that in the littoral lake benthos itself, although there was no evidence of any species change in the composition of the littoral benthos brought about by stream inputs. 3. Although streams made no measurable contribution to the biomass or taxonomic composition of the littoral macroinvertebrate benthos, there was substantial temporal variation in biomass among the eight sites for each of the (n = 7) sample periods during which observations were made. Variation in total biomass was primarily a function of bottom slope and benthic substrata in the lake habitats. Dominant taxonomic groups were Baetidae, Ephemerellidae (two genera), Leptophlebiidae, Chironomidae (three subfamilies) and Perlodidae, although we did not determine the specific substratum affinities of each taxon. 4. Mixed effects linear models identified a significant interaction between macroinvertebrate biomass and plot type (stream inflow vs. control) associated with fish abundance. Across the observed range of macroinvertebrate biomass, fish showed a significant preference for stream inflows, but more closely tracked food availability in the controls. For young‐of‐the‐year (YOY), a negative effect of temperature was also included in the model, and we observed lower temperatures at stream inflows. However, abundance of predatory adults affected habitat selection for YOY. Lake‐bottom slope also accounted for variation in abundance in both fish models. 5. Our results suggest that the effect of fishless headwater streams on downstream fish may not always be through direct delivery of food. In this study system, fish preferred stream inflow plots, but this preference interacted with macroinvertebrate biomass in a manner that was difficult to explain. For YOY, predation risk was related to the preference for stream inflows, although the specific factor that mitigates predation risk remains poorly understood.  相似文献   

18.
Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.  相似文献   

19.
Laboratory microcosms were used to assess whether tadpole shrimp, Triops sp., affect community structure of other native macroinvertebrates in playa lakes of the Southern High Plains of Texas. Removal of tadpole shrimp shortly after hatching reduced abundances of many taxa, and decreased subsequent taxonomic richness and diversity. For many invertebrates, the presence of tadpole shrimp in low numbers had a positive effect on mean abundance. Direct effects of tadpole shrimp include the reduction of prey species abundance, which in turn may alter biotic interactions among other taxa. Indirect effects include physical modification of the environment during foraging through surface sediments. Results suggest that tadpole shrimp may be a key species controlling structure of macroinvertebrate communities in playa lakes.  相似文献   

20.
Fuller  Randall L.  Kennedy  Brian P.  Nielsen  Carl 《Hydrobiologia》2004,523(1-3):113-126
Our study was designed to assess the relative importance of algae and bacteria as sources of energy for stream macroinvertebrates. In one experiment, we manipulated algae by artificially shading six sections in each of two streams, one stream with an open canopy (clear-cut drainage basin) and the other with a closed canopy (forested drainage basin); both streams were in Hubbard Brook Experimental Forest, New Hampshire, USA. Chlorophyll a concentrations were reduced from 0.2 to 0.05 μg/cm2 in artificially shaded sections of both streams. However, macroinvertebrates showed no response to these algal manipulations in either the clear-cut or forested stream. Nutrient concentrations (N and P) were low and limiting to primary production in both the clear-cut and forested streams. Additionally, both streams had relatively low macroinvertebrate densities suggesting bottom-up controls were important in macroinvertebrate abundance. However, the forested stream did have higher macroinvertebrate densities presumably because of higher inputs of coarse particulate organic matter from the riparian vegetation. In a second experiment, in Augusta Creek, Michigan, we manipulated both algae and bacteria. To reduce algae, we artificially shaded experimental stream channels so that chlorophyll a was reduced from natural levels of 3.0–5.6 to 0.4–0.7 μg/cm2. Half of the shaded channels had dissolved organic carbon (DOC – sucrose) dripped into them to raise DOC levels by 2–3 mg/l and thus stimulate bacterial abundance. Open channels, with higher algal abundance, had higher densities of Ephemerella, but only in November when nymphs were larger. Channels with increased DOC had higher bacterial abundances, higher densities of Chironomidae and lower densities of Heptageniidae. Several other macroinvertebrate taxa that were at relatively low abundance in our samples showed no significant response to these manipulations. Our results suggest that early instar Ephemerella may not rely as heavily on algae as later instars. Also, certain taxa were able to use the heterotrophic microbial community, especially chironomids which increased in numbers when bacterial density increased; thus, the bacterial carbon source may be more important to some stream macroinvertebrates than previous studies have suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号