首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Legumes are important components of grassland mixtures due to their ability to sustain high yields with moderate nitrogen inputs. This study investigates nitrogen relationships in mixtures of Trifolium pratense and grasses into which a deep-rooted forb was included, and particularly whether these realtionships differ when the forb is a legume or a non-legume species.

Methods

A field experiment in which mixtures of T. pratense, Phleum pratense, Lolium perenne, and Medicago sativa or Cichorium intybus, and monocropped stands of all species was established in 2007 and harvested in 2008 and 2009. The experiment received a total input of 100 kg?ha?1?N yearly. Yield and botanical composition were determined in seven harvests. Species were analysed for 15N abundance, and N2 fixation and N transfer were calculated. Soil samples were analysed twice for inorganic N.

Results

Non-legumes benefitted from the presence of legumes in terms of N concentration, and the yield of mixtures exceeded that of monocropped non-legumes but not monocropped legumes. The mixture containing M. sativa did not yield more DM or N than did the mixture containing C. intybus. A total of 17.08 kg?N ha?1 was transferred from T. pratense to the non-legumes in the mixture in which it was the sole legume species.

Conclusions

It is concluded that there was a synergy effect in species mixtures, but the effect did not differ between the two deep-rooted species.  相似文献   

2.

Background

Although plant growth in alpine steppes on the Tibetan Plateau has been suggested to be sensitive to nitrogen (N) addition, the N limitation conditions of alpine steppes remain uncertain.

Methods

After 2 years of fertilization with NH4NO3 at six rates (0, 10, 20, 40, 80 and 160 kg N ha?1 yr?1), the responses of plant and soil parameters as well as N2O fluxes were measured.

Results

At the vegetation level, N addition resulted in an increase in the aboveground N pool from 0.5?±?0.1 g m?2 in the control plots to 1.9?±?0.2 g m?2 in the plots at the highest N input rate. The aboveground C pool, biomass N concentration, foliar δ15N, soil NO3 ?-N and N2O flux were also increased by N addition. However, as the N fertilization rate increased from 10 kg N ha?1 yr?1 to 160 kg N ha?1 yr?1, the N-use efficiency decreased from 12.3?±?4.6 kg C kg N?1 to 1.6?±?0.2 kg C kg N?1, and the N-uptake efficiency decreased from 43.2?±?9.7 % to 9.1?±?1.1 %. Biomass N:P ratios increased from 14.4?±?2.6 in the control plots to 20.5?±?0.8 in the plots with the highest N input rate. Biomass N:P ratios, N-uptake efficiency and N-use efficiency flattened out at 40 kg N ha?1 yr?1. Above this level, soil NO3 ?-N began to accumulate. The seasonal average N2O flux of growing season nonlinearly increased with increased N fertilization rate and linearly increased with the weighted average foliar δ15N. At the species level, N uptake responses to relative N availability were species-specific. Biomass N concentration of seven out of the eight non-legume species increased significantly with N fertilization rates, while Kobresia macrantha and the one legume species (Oxytropics glacialis) remained stable. Both the non-legume and the legume species showed significant 15N enrichment with increasing N fertilization rate. All non-legume species showed significant increased N:P ratios with increased N fertilization rate, but not the legume species.

Conclusions

Our findings suggest that the Tibetan alpine steppes might be N-saturated above a critical N load of 40 kg N ha?1 yr?1. For the entire Tibetan Plateau (ca. 2.57 million km2), a low N deposition rate (10 kg N ha?1 yr?1) could enhance plant growth, and stimulate aboveground N and C storage by at least 1.1?±?0.3 Tg N yr?1 and 31.5?±?11.8 Tg C yr?1, respectively. The non-legume species was N-limited, but the legume species was not limited by N.  相似文献   

3.

Aims

A 3-year field experiment (October 2004–October 2007) was conducted to quantify N2O fluxes and determine the regulating factors from rain-fed, N fertilized wheat-maize rotation in the Sichuan Basin, China.

Methods

Static chamber-GC techniques were used to measure soil N2O fluxes in three treatments (three replicates per treatment): CK (no fertilizer); N150 (300 kg N fertilizer ha?1 yr?1 or 150 kg N?ha?1 per crop); N250 (500 kg N fertilizer ha?1 yr?1 kg or 250 kg N?ha?1 per crop). Nitrate (NO 3 ? ) leaching losses were measured at nearby sites using free-drained lysimeters.

Results

The annual N2O fluxes from the N fertilized treatments were in the range of 1.9 to 6.7 kg N?ha?1 yr?1 corresponding to an N2O emission factor ranging from 0.12 % to 1.06 % (mean value: 0.61 %). The relationship between monthly soil N2O fluxes and NO 3 - leaching losses can be described by a significant exponential decaying function.

Conclusions

The N2O emission factor obtained in our study was somewhat lower than the current IPCC default emission factor (1 %). Nitrate leaching, through removal of topsoil NO 3 ? , is an underrated regulating factor of soil N2O fluxes from cropland, especially in the regions where high NO 3 - leaching losses occur.  相似文献   

4.

Background and Aims

Increased plant density improves grain yield and nitrogen (N)–use efficiency in winter wheat (Triticum aestivum L.) by increasing the root length density (RLD) in the soil and aboveground N–uptake (AGN) at maturity. However, how the root distribution and N–uptake at different soil depths is affected by plant density is largely unknown.

Methods

A 2–year field study using the winter wheat cultivar Tainong 18 was conducted by injecting 15?N–labeled urea into soil at depths of 0.2, 0.6, and 1.0 m under four plant densities of 135 m?2, 270 m?2,405 m?2, and 540 m?2.

Results

We observed significant RLD and 15?N–uptake increases at each soil depth as the plant density increased from 135 to 405 m?2. 15?N–uptake increased with plant density as the soil depth increased, although the corresponding RLD value fell with depth. The 15?N–uptake at each soil depth was positively related to the RLD at the same depth. The total AGN was positively related to RLD in deep soil, especially at 0.8–1.2 m.

Conclusions

Increasing the plant density from 135 m?2 to the optimum increases AGN primarily by increasing the RLD in deep soil and therefore increasing the plant density of winter wheat can be used to efficiently recover N leached to deep soil. Moreover, the total root numbers per unit area and RLD still increased at supraoptimal density while shoot number and N uptake stagnated.  相似文献   

5.

Aims

A field experiment was conducted to quantify annual nitrous oxide (N2O) fluxes from control and fertilized plots under open-air and greenhouse vegetable cropping systems in southeast China. We compiled the reported global field annual N2O flux measurements to estimate the emission factor of N fertilizer for N2O and its background emissions from vegetable fields.

Methods

Fluxes of N2O were measured using static chamber-GC techniques over the 2010–2011 annual cycle with multiple cropping seasons.

Results

The mean annual N2O fluxes from the controls were 46.1?±?2.3 μg N2O-N m?2 hr?1 and 68.3?±?4.1 μg N2O-N m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. For the plots receiving 900 kg?N?ha?1, annual N2O emissions averaged 90.6?±?8.9 μg N2O-N m?2 hr?1 and 106.4?±?6.6 μg N2O-N?m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. By pooling published field N2O flux measurements taken over or close to a full year, the N2O emission factor for N fertilizer averaged 0.63?±?0.09 %, with a background emission of 2.67?±?0.80 kg N2O-N ha?1 in Chinese vegetable fields. Annual N2O emissions from Chinese vegetable systems were estimated to be 84.7 Gg N2O-N yr?1, consisting of 72.5 Gg N2O-N yr?1 and 12.2 Gg N2O-N yr?1 in the open-air and greenhouse vegetable systems, respectively.

Conclusions

While N2O emissions from the greenhouse vegetable cropping system tended to be slightly higher compared to the open-air system in our experiment, the synthesis of literature data suggests that N2O emissions would be greater at low N-rates but smaller at high N-rates in greenhouse systems than in open-air vegetable cropping systems. The estimates of this study suggest that vegetable cropping systems covering 11.4 % in national total cropping area, contributed 21–25 % to the total N2O emission from Chinese croplands.  相似文献   

6.

Background and aims

Wetlands are important carbon sinks across the planet. However, soil carbon sequestration in tropical freshwater wetlands has been studied less than its counterpart in temperate wetlands. We compared carbon stocks and carbon sequestration in freshwater wetlands with various geomorphic features (estuarine, perilacustrine and depressional) and various plant communities (marshes and swamps) on the tropical coastal plain of the Gulf of Mexico in the state of Veracruz, Mexico. These swamps are dominated by Ficus insipida, Pachira aquatic and Annona glabra and the marshes by Typha domingensis, Thalia geniculata, Cyperus giganteus, and Pontederia sagittata.

Methods

The soil carbon concentration and bulk density were measured every 2 cm along 80 cm soil profiles in five swamps and five marshes. Short-term sediment accretion rates were measured during a year using horizontal makers in three of the five swamps and marshes, the carbon sequestration was calculated using the accretion rates, and the bulk density and the percentage of organic carbon in the surficial layer was measured.

Results

The average carbon concentration ranged from 50 to 150 gC kg?1 in the marshes and 50 to 225 gC kg?1 in the swamps. When the wetlands were grouped according to their geomorphic features, no significant differences in the carbon stock (P?=?0.095) were found (estuarine (25.50?±?2.26 kgC m?2), perilacustrine (28.33?±?2.74 kgC m?2) and depressional wetlands (34.93?±?4.56 kgC m?2)). However, the carbon stock was significantly higher (P?=?0.030) in the swamps (34.96?±?1.3 kgC m?2) than in the marshes (25.85?±?1.19 kgC m?2). The average sediment accretion rates were 1.55?±?0.09 cm yr?1 in the swamps and 0.84?±?0.02 cm yr?1 in the marshes with significant differences (P?=?0.040). The rate of carbon sequestration was higher (P?=?0.001) in swamp soils (0.92?±?0.12 kgC m?2 yr?1) than marsh soils (0.31?±?0.08 kgC m?2 yr?1). Differences in the rates of carbon sequestration associated with geomorphic features were found between the swamp ecosystems (P?<?0.05); i.e., higher values were found in the swamps than in the marshes in perilacustrine and estuarine wetlands (P?<?0.05). However, no significant differences (P?=?0.324) in carbon sequestration rates were found between the marsh and swamp areas of the depressional site.

Conclusions

Swamp soils are more important contributors to the carbon stock and sequestration than are marsh soils, resulting in a reduction in global warming, which suggests that the plant community is an important factor that needs to be considered in global carbon budgets and projects of restoration and conservation of wetlands.  相似文献   

7.

Background and aims

As low initial uptake and essentially zero later uptake limit efficacy of N fertilization for temperate conifers, we investigated factors limiting long-term tree uptake of residual 15?N-labeled fertilizer.

Methods

We used a pot bioassay to assess availability of 15?N from soil sampled 10 years after fertilization of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand with 15?N-urea (200 kg N ha?1). Douglas-fir seedlings were grown for 2 years in organic (designated LFH) and mineral soil (0–10 cm) layers reconstructed from control and fertilized plots; residual fertilizer N amounted to 10 % of LHF and 5 % of MIN N.

Results

Percentage recovery of residual 15?N in seedlings was not affected by the original season of fertilization (spring vs. fall), but differed by the source of 15?N excess. LFH was a better source of residual 15?N; 12.4 % of residual LFH 15?N was taken up by seedlings and 7.6 % transferred to soil, whereas mineral soil yielded only 8.3 % of residual 15?N to seedling uptake and 2.4 % to LFH. Extractable inorganic N was 2–3 orders of magnitude higher in fallow pots.

Conclusions

Ten-year residual fertilizer 15?N was clearly cycling between LFH and mineral soil and available to seedlings, indicating that other factors such as denitrification, leaching, and asynchrony of soil N mineralization and tree uptake limit long-term residual N fertilizer uptake in the field.  相似文献   

8.

Aims

We characterized the runoff and erosion from a volcanic soil in an Austrocedrus chilensis forest affected by a wildfire, and we evaluated the effects of a mitigation treatment.

Methods

Rainfall simulations were performed in the unburned and burned forest, with and without vegetation cover, and under a mitigation treatment.

Results

After the wildfire, the mean infiltration rate decreased from 100 mm?h?1 in unburned soils to 51 and 64 mm?h?1 in the burned with and without litter and vegetation cover, respectively. The fast establishment of bryophytes accelerated the recovery of soil stability. Sediment production was negligible in the control plots (4.4 g?m?2); meanwhile in the burned plots, it was 118.7 g?m?2 and increased to 1026.1 g?m?2 in the burned and bare plots. Total C and N losses in the control plots were negligible, while in the burned and bare plots the organic C and total N removed were 98.25 and 1.64 g?m2, respectively. The effect of mitigation treatment was efficient in reducing the runoff, but it did not affect the sediment production.

Conclusions

These fertile volcanic soils promoted the recovery of vegetation in a short time after the wildfire, diminishing the risk of erosion.  相似文献   

9.

Background and aims

The roots of tussock-forming plants contribute to the formation of microtopographic features in many ecosystems, but the dynamics of such roots are poorly understood. We examined the spatial heterogeneity of tussock fine root dynamics to investigate allocation patterns and the role of root productivity in the persistence of tussock structures.

Methods

We compared the spatial variability of fine root (<1 mm, 1–2 mm) density, biomass, % live, allocation, turnover rate (using bomb 14C), and productivity of four Carex stricta Lam.-dominated tussock meadows in the upper Midwest, USA (3 reference, 1 restored site).

Results

Relative to underlying microsites, tussocks were warm, dry, and high in root density, productivity, % live biomass, and turnover. Root productivity averaged 649 g?m?2 yr?1 (±208) in reference sites, comprised 57 % (±10) of total net production, and was concentrated in tussocks (70 %?±?4). Root turnover rate averaged 0.63 yr?1 (±0.08), but tussocks had ~50 % faster root turnover than the underlying soil, and <1 mm roots turned over ~40 % faster than 1–2 mm roots.

Conclusions

Our detailed analysis of the spatial heterogeneity of tussock root dynamics suggests that high allocation and elevated turnover of tussock roots facilitates organic matter accumulation and tussock persistence over time.  相似文献   

10.

Background and aims

Dominance of C4 grasses has been proposed as a means of increasing soil organic carbon (SOC) sequestration in restored tallgrass prairies. However, this hypothesis has not been tested on long time scales and under realistic (e.g. N-limited) environmental conditions. We sampled a restoration in southern Illinois 33 years after establishment to determine the effects of varying plant communities on SOC sequestration in the top 50 cm of soil.

Methods

SOC, total nitrogen (TN), and the stable isotopic composition of SOC (δ13C) were used to calculate SOC sequestration rates, N storage, and the relative contributions of C3 vs. C4 plant communities as a function of soil depth.

Results

While both a forb-dominated and a mixed forb-grass plant community showed positive sequestration rates (0.56?±?0.13 and 0.27?±?0.10 Mg C ha?1 yr?1, respectively), a C4 grass-dominated community showed SOC losses after 33 years of restoration (?0.31?±?0.08 Mg C ha?1 yr?1). Soil δ13C values were significantly more negative for forb-dominated plant communities, increasing the confidence that plant communities were stable over time and an important contributor to differences in SOC stocks among transects.

Conclusion

These results suggest that functional diversity may be necessary to sustain sequestration rates on the scale of decades, and that dominance of C4 grasses, favored by frequent burning, may lead to SOC losses over time.  相似文献   

11.

Background and aims

Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention.

Methods

Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 t?ha-1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha-1). Nitrogen fertilizer enriched with 15?N was applied in 2009 to the 0 and 12 t?ha-1 of biochar at 100 and 50 % secondary N application.

Results

Maize yield and plant N uptake did not change with biochar additions (p?>?0.05; n?=?3). Less N (by 82 %; p?<?0.05) was lost after biochar application through leaching only at 100 %?N fertilization. The reason for an observed 140 % greater retention of applied 15?N in the topsoil may have been the incorporation of added 15?N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer 15?N (0.42 % of applied N; p?<?0.05) and comparatively high recovery of applied 15?N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar.

Conclusions

Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.  相似文献   

12.

Aim

This study aimed at better characterising background nitrous oxide (N2O) emissions (BNE) in agricultural and natural lands.

Methods

We compiled and analysed field-measured data for annual background N2O emission in agricultural (BNEA) and natural (BNEN) lands from 600 and 307 independent experimental studies, respectively.

Results

There were no significant differences between BNEA (median: 0.70 & mean: 1.52 kg N2O???N ha?1 yr?1) and BNEN (median:0.31 & mean:1.75 kg N2O???N ha?1 yr?1) (P?>?0.05). A simultaneous comparison across all BNEA and BNEN indicated that BNEs from riparian, vegetable crop fields and intentional fallow areas were significantly higher than from boreal forests (P?<?0.05). Correlation and regression analyses supported the underlying associations of soil organic carbon (C), nitrogen (N), pH, bulk density (BD),and/or air temperature (AT) with BNEs to a varying degree as a function of land-use or ecosystem type (Ps?<?0.05).

Conclusions

Although overall BNEN tended to be lower than BNEA on median basis, results in general suggest that land-use shifts between natural and managed production systems would not result in consistent changes in BNE.  相似文献   

13.

Background & Aims

The consequences of fertiliser addition to semi-natural grasslands are well understood, but much less is known about the consequences of cessation of nitrogen fertiliser regimes, including rates of recovery. This study aimed to investigate whether the effects of nitrogen (N) additions to a mesotrophic grassland were still apparent 15 years after the cessation of N inputs.

Methods

A long-term experiment at Tadham Moor, UK, received N additions at rates of 0, 25, 50, 100 and 200 kg N ha?1 yr?1 between 1986 and 1994. Fifteen years after the cessation of N additions soil chemistry, plant tissue chemistry, plant biomass and Ellenberg N values were assessed.

Results

KCl-extractable ammonium-N, total soil N, total organic carbon and microbial biomass N differed between the controls and the higher historic levels of N addition. Plant tissue chemistry showed no significant effects of previous N addition. Above-ground biomass was higher where N had been added, although this response was only weakly significant. The species composition of the vegetation showed effects of the N addition with mean Ellenberg N values significantly higher than the control in most treatments.

Conclusion

The effects of long-term N addition can be seen for many years.  相似文献   

14.

Background and aims

The influences of succession and species diversity on fine root production are not well known in forests. This study aimed to investigate: (i) whether fine root biomass and production increased with successional stage and increasing tree species diversity; (ii) how forest type affected seasonal variation and regrowth of fine roots.

Methods

Sequential coring and ingrowth core methods were used to measure fine root production in four Chinese subtropical forests differing in successional stages and species diversity.

Results

Fine root biomass increased from 262 g·m?2 to 626 g·m?2 with increasing successional stage and species diversity. A similar trend was also found for fine root production, which increased from 86 to 114 g·m?2 yr ?1 for Cunninghamia lanceolata plantation to 211–240 g·m?2 yr ?1 for Choerospondias axillaries forest when estimated with sequential coring data. Fine root production calculated using the ingrowth core data ranged from 186 g·m?2 yr ?1 for C. lanceolata plantation to 513 g·m?2 yr ?1 for Lithocarpus glaber – Cyclobalanopsis glauca forest.

Conclusions

Fine root biomass and production increased along a successional gradient and increasing tree species diversity in subtropical forests. Fine roots in forests with higher species diversity exhibited higher seasonal variation and regrowth rate.  相似文献   

15.

Background and Aims

Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values.

Methods

We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature.

Results

Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr?1 for Fagus sylvatica and 0.88 yr?1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr?1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula.

Conclusions

We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting.  相似文献   

16.

Background and aims

Two inland dunes in the Netherlands receiving low (24) and high (41 kg N ha?1 yr?1) nitrogen (N) deposition were compared for N dynamics and microbial activity to investigate the potential effect of N on succession rate of the vegetation and loss of pioneer habitats.

Methods

Primary succession stages were sampled, including bare sand, and vegetation dominated by Polytrichum piliferum, Campylopus introflexus, lichens and grasses respectively, representing a series of vegetation types in undisturbed drift sand sites with succession starting on bare sand containing virtually no organic matter. Microbial characteristics and potential N mineralization were analysed in a laboratory experiment.

Results

Organic matter accumulated during succession, resulting in a lower pH and in higher microbial biomass (bacteria and fungi), respiration and net N mineralization. The increase in respiration and N mineralization was largely due to the development of an ectorganic layer in the middle stages of succession. The observed effects of N deposition were (1) decrease of microbial biomass, (2) higher net N mineralization per m2, (3) higher levels of free nitrogen in the soil, and (4) a higher microbial N:P ratio.

Conclusions

Elevated N deposition leads to higher N availability which may cause accelerated succession.  相似文献   

17.

Background and aims

Knowledge about the effects of water and fertilizer on soil CO2 efflux (SCE) and Q 10 is essential for understanding carbon (C) cycles and for evaluating future global C balance. A two-year field experiment was conducted to determine the effects of water, fertilizer, and temperature on SCE in semiarid grassland in northern China.

Methods

SCE, as well as environmental factors was measured in two grasslands, one with bunge needlegrass (BNE, Stipa bungeana) and one with purple alfalfa (ALF, Medicago sativa), with four treatments: CK (unwatered and unfertilized); W (50 mm water addition yr?1); F (50 kg phosphorus (P) fertilizer ha?1 yr?1 for ALF, 100 kg nitrogen (N)?+?50 kg P fertilizer ha?1 yr?1 for BNE); and W + F.

Results

During the 11-month experimental period from July 2010 to October 2011, the addition of water consistently stimulated mean SCE in BNE and ALF, and the positive effects were relatively stronger during dry seasons. P fertilization consistently enhanced SCE in ALF, and the positive effect was strongly dependent on the availability of soil water. The effects of N plus P fertilization on SCE in BNE varied seasonally from significant increases to small reductions to no response. Water addition increased the Q 10 of SCE in ALF by 11 % but had no effect in BNE. Fertilization, however, reduced the Q 10 of SCE by 21 % and 13 % for BNE and ALF, respectively. Models that rely only on Q 10 underestimated the emissions of soil CO2 by 8–15 % at the study site, which was mediated by species and treatment.

Conclusions

Responses of SCE and its temperature sensitivity to water and fertilizer may vary with species and depend on the period of measurement. Models of SCE need to incorporate the availability of ecosystemic water and nutrients, as well as species, and incorporate different environmental factors when determining the impact of water, nutrients, and species on SCE.  相似文献   

18.

Background

Nitrogen-fixing legumes are key species in grassland ecosystems, as their ability to fix atmospheric nitrogen can facilitate neighboring plants. However, little is known about the fate of this legume effect in the face of extreme weather events, which are increasingly expected to occur.

Methods

Here, we examined experimentally how the presence of a legume modifies above-ground net primary production (ANPP) and nitrogen supply of neighboring non-legumes under annually recurrent pulsed drought and heavy rainfall events by comparing responses of three key species in European grassland versus without legume presence over 4 years.

Results

Legume presence facilitated community productivity of neighboring non-legumes under ambient weather conditions and also under experimental heavy rainfall. However, no facilitation of community productivity by the legume was found under experimental drought. Productivity of the three target species responded species-specifically to legume presence under different weather conditions: Holcus lanatus was facilitated only under control conditions, Plantago lanceolata was facilitated only under heavy rainfall, and Arrhenatherum elatius was facilitated irrespective of climate manipulations. The legume effects on δ 15N, leaf N concentration, and N uptake were also species-specific, yet irrespective of the climate manipulations. The data suggest that the missing legume effect on community productivity under the pulsed drought was rather caused by reduced N-uptake of the target species than by reduced N-fixation by the legume.

Conclusions

In contrast to heavy rain, the presence of a legume could not effectively buffer community ANPP against the negative effects of extreme drought events in an experimental temperate grassland. Facilitation also depends on the key species that are dominating a grassland community.  相似文献   

19.

Background and aims

Nitrogen (N) deposition usually alters plant community structure and reduces plant biodiversity in grasslands. Seedling recruitment is essential for maintaining species richness and determines plant community composition. Arbuscular mycorrhizal fungi (AMF) are widespread symbiotic fungi and could facilitate seedling establishment. Here we conducted an experiment to address whether the influence of AMF on seedling recruitment depends on N addition and plant species.

Methods

Leymus chinensis were cultivated for 5 months in the microcosms that were inoculated with or without AMF at five N addition rates. Seeds of three main species (two C3 grasses and one non-N2-fixing forb) of the Eurasian steppe were sown to the 5-month-old microcosms. Seedling establishment was estimated by shoot biomass, N and P contents 7 weeks after seedling germination.

Results

AMF promoted seedlings recruitment of two C3 grasses at addition rates above 0.5 g N m?2. In contrast, seedling recruitment of the non-N2-fixing forb was increased by AMF at addition rates below 0.5 g N m?2 but was decreased above 2.5 g N m?2.

Conclusions

These results partly explain why N addition favored the dominance of grasses over forbs in perennial grassland communities. Our study indicates that AMF have the potential to influence plant community composition by mediating revegetation in the face of N deposition.  相似文献   

20.

Aims

Hemiparasitic plants often produce nutrient-rich litter with high decomposition rates, and thus can enhance nutrient availability. When plant species have differential affinities for this nutrient source, hemiparasitic litter might influence species composition in addition to the parasitic suppression of host species. We expected that species adapted to fertile habitats derive a higher proportion of nutrients from the hemiparasitic litter compared to other species.

Methods

15N-labeled litter of Rhinanthus angustifolius and Pedicularis sylvatica was added to experimental field plots and adjacent litter bags. We examined N release from the litter, N uptake by the vegetation 2, 4 and 12 months after litter addition and differences in the proportion of N taken up from the litter (NL) between co-occurring species.

Results

The percentage of N in shoots of co-occurring plant species that is derived from the added hemiparasitic litter (NL) strongly differed between the species (0.1–6.2 %). After exclusion of species with an alternative N source (legumes as well as ectomycorrhizal and ericoid mycorrhizal species), NL was positively related (p?<?0.001) with specific leaf area (SLA) and at Pedicularis sites with leaf N concentration (LNC) and leaf phosphorus concentration (LPC) (p?<?0.05), i.e. leaf traits associated with a fast-growth strategy and adaptation to high-nutrient environments.

Conclusions

Our results suggest that nutrient release from hemiparasitic litter favors plant species with a fast-growth strategy adapted to high-nutrient environments compared to species with a slow-growth strategy. Whether continued hemiparasitic litter inputs are able to change species composition in the long term requires further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号