首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virulence factors secreted by Listeria monocytogenes are known to interfere with host cellular signalling pathways. We investigated whether L. monocytogenes modulates T-cell receptor signalling by examining surface expression of proteins known to be upregulated on activated T cells. In vitro culture of murine splenocytes with L. monocytogenes resulted in a specific and dose-dependent upregulation of Fas ligand (FasL). Induction of FasL expression was also observed for pathogenic Listeria ivanovii but not for non-pathogenic Listeria innocua, indicating involvement of Listeria virulence protein(s). Examination of L. monocytogenes strains deficient in different virulence genes demonstrated that FasL upregulation was dependent on the expression of two secreted proteins: listeriolysin O (LLO) and phosphatidylcholine-preferring phospholipase C (PC-PLC). Treatment of cells with purified proteins demonstrated that LLO was sufficient for inducing FasL, while PC-PLC synergized with LLO for the induction of FasL expression. FasL-expressing cells induced by L. monocytogenes were capable of killing Fas-expressing target cells. Furthermore, L. monocytogenes infection results in upregulation of FasL on T cells in mice. These results describe a novel function for LLO and PC-PLC and suggest that L. monocytogenes may use these virulence factors to modulate the host immune response.  相似文献   

2.
Type I IFN (IFN-I) signaling is detrimental to cells and mice infected with Listeria monocytogenes. In this study, we investigate the impact of IFN-I on the activity of listeriolysin O (LLO), a pore-forming toxin and virulence protein released by L. monocytogenes. Treatment of macrophages with IFN-beta increased the ability of sublytic LLO concentrations to cause transient permeability of the plasma membrane. At higher LLO concentrations, IFN-beta enhanced the complete breakdown of membrane integrity and cell death. This activity of IFN-beta required Stat1. Perturbation of the plasma membrane by LLO resulted in activation of the p38MAPK pathway. IFN-beta pretreatment enhanced LLO-mediated signaling through this pathway, consistent with its ability to increase membrane damage. p38MAPK activation in response to LLO was independent of TLR4, a putative LLO receptor, and inhibition of p38MAPK neither enhanced nor prevented LLO-induced death. IFN-beta caused cells to express increased amounts of caspase 1 and to produce a detectable caspase 1 cleavage product after LLO treatment. Contrasting recent reports with another pore-forming toxin, this pathway did not aid cell survival as caspase 1-deficient cells were equally sensitive to lysis by LLO. Key lipogenesis enzymes were suppressed in IFN-beta-treated cells, which may exacerbate the membrane damage caused by LLO.  相似文献   

3.
The development of protective immunity against many intracellular bacterial pathogens commonly requires sublethal infection with viable forms of the bacteria. Such infection results in the in vivo activation of specific cell-mediated immune responses, and both CD4+ and CD8+ T lymphocytes may function in the induction of this protective immunity. In rodent models of experimental infection with Listeria monocytogenes, the expression of protective immunity can be mediated solely by the immune CD8+ T cell subset. One major target Ag of Listeria-immune CD8+ T cells is the secreted bacterial hemolysin, listeriolysin O (LLO). In an attempt to generate a subunit vaccine in this experimental disease model, eukaryotic plasmid DNA expression vectors containing genes encoding either the wild-type or modified forms of recombinant LLO were generated and used for genetic vaccination of naive mice. Results of these studies indicate that the intramuscular immunization of mice with specifically designed plasmid DNA constructs encoding recombinant forms of LLO stimulates peptide-specific CD8+ immune T cells that exhibit in vitro cytotoxic activity. More importantly, such immunization can provide protective immunity against a subsequent challenge with viable L. monocytogenes, demonstrating that this experimental approach may have direct application in prevention of acute disease caused by intracellular bacterial pathogens.  相似文献   

4.
The granule exocytosis pathway of cytotoxic lymphocytes is crucial for immune surveillance and homeostasis. The trafficking of granule components, including the membrane-disruptive protein perforin, to the immunological synapse leads to the delivery of granule proteases (granzymes) into the target cell and its destruction through apoptosis. Several independent molecular abnormalities associated with defects of either granule trafficking or perforin function can cause cytotoxic lymphocyte dysfunction. In humans, inherited perforin mutations result in severe immune dysregulation that manifests as familial haemophagocytic lymphohistiocytosis. This Review describes recent progress in defining the structure, function, biochemistry and cell biology of perforin.  相似文献   

5.
Infection of mice with Listeria monocytogenes caused marked lymphocyte apoptosis in the white pulp of the spleen on day 2 postinfection. We prove in this study that listeriolysin O (LLO), a pore-forming molecule and a major virulence factor of Listeria, could directly induce murine lymphocyte apoptosis both in vivo and in vitro at nanomolar and subnanomolar doses. Induction of apoptosis by LLO was rapid, with caspase activation seen as early as 30 min post-treatment. T cells lost their mitochondrial membrane potential and exposed phosphatidylserine within 8 h of treatment. Incubation of lymphocytes with a pan-caspase inhibitor blocked DNA laddering and caspase-3 activation, but did not block phosphatidylserine exposure or loss of mitochondrial membrane potential. We describe a novel function for LLO: induction of lymphocyte apoptosis with rapid kinetics, effected by both caspase-dependent and -independent pathways.  相似文献   

6.
The production of a hemolytic exotoxin (Hly) termed listeriolysin O (LLO) is a major determinant of the virulence of the Gram-positive bacterium Listeria monocytogenes. As determined by lethal inoculum size, LLO- strains of L. monocytogenes generally are several orders of magnitude less virulent than their LLO+ counterparts. The generation of protective anti-Listeria T cell immunity also has been shown to depend on the LLO phenotype of the bacteria present during primary infection, although the cellular basis of this observation is not known. The experiments described here address the role of LLO in regulation of the expression of class II MHC (Ia) molecules by murine macrophages. Because Ia expression by macrophages and other APC is thought to be a central factor in the generation of T cells specific for bacterial Ag, we have tested the hypothesis that the failure of LLO- strains to elicit anti-Listeria T cell responses might be secondary to an inability of these strains to stimulate increases in macrophage Ia levels. Our results show that the macrophage Ia response after i.p. injection of L. monocytogenes correlates strongly with the LLO phenotype of the bacteria. The presence of LLO+ organisms, even at very small numbers (as few as 10), elicits a striking increase in Ia expression by peritoneal macrophages. In contrast, even at very high numbers (up to 10(6) per mouse), LLO- bacteria fail to stimulate a strong Ia response. We also have analyzed macrophage Ia expression after injection of lysates of Escherichia coli expressing recombinant LLO protein. Similar to the results obtained with LLO+ and LLO- L. monocytogenes, we have observed Ia induction only with LLO+ lysates. Ia induction by this crude recombinant LLO preparation can be inhibited by cholesterol or heat. Furthermore, supernatants derived from cultures of LLO+ (but not LLO-) L. monocytogenes can cause Ia induction when administered via i.p. injection. Taken together, these findings suggest that the failure of macrophages to respond to LLO- organisms with an increase in Ia expression may be a major underlying cause of the failure of these bacteria to induce Listeria-specific protective T cell immunity. Furthermore, we propose that the induction of macrophage Ia expression in response to bacterial toxins such as Hly may represent one component of a set of early, innate immune mechanisms, and that this induction may provide a critical "bridge" to later, acquired, Ag-specific immune processes.  相似文献   

7.
Listeriolysin O (LLO), an hly-encoded cytolysin from Listeria monocytogenes, plays an essential role in the entry of this pathogen into the macrophage cytoplasm and is also a key factor in inducing the production of IFN-gamma during the innate immune stage of infection. In this study, we examined the involvement of LLO in macrophage production of the IFN-gamma-inducing cytokines IL-12 and IL-18. Significant levels of IL-12 and IL-18 were produced by macrophages upon infection with wild-type L. monocytogenes, whereas an LLO-deficient mutant (the L. monocytogenes Deltahly) lacked the ability to induce IL-18 production. Complementation of Deltahly with hly completely restored the ability. However, when Deltahly was complemented with ilo encoding ivanolysin O (ILO), a cytolysin highly homologous with LLO, such a restoration was not observed, although ILO-expressing L. monocytogenes invaded and multiplied in the macrophage cytoplasm similarly as LLO-expressing L. monocytogenes. Induction of IL-18 was diminished when pretreated with a caspase-1 inhibitor or in macrophages from caspase-1-deficient mice, suggesting the activation of caspase-1 as a key event resulting in IL-18 production. Activation of caspase-1 was induced in macrophages infected with LLO-expressing L. monocytogenes but not in those with Deltahly. A complete restoration of such an activity could not be observed even after complementation with the ILO gene. These results show that the LLO molecule is involved in the activation of caspase-1, which is essential for IL-18 production in infected macrophages, and suggest that some sequence unique to LLO is indispensable for some signaling event resulting in the caspase-1 activation induced by L. monocytogenes.  相似文献   

8.
Granule exocytosis by cytotoxic lymphocytes is the key mechanism to eliminate virus-infected cells and tumor cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes. All human granzymes display distinct substrate specificities and induce cell death by cleaving critical intracellular death substrates. In the present study, we show that all human granzymes directly cleaved the DNA/RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K), designating hnRNP K as the first known pan-granzyme substrate. Cleavage of hnRNP K was more efficient in the presence of RNA and occurred in two apparent proteolysis-sensitive amino acid regions, thereby dissecting the functional DNA/RNA-binding hnRNP K domains. HnRNP K was cleaved under physiological conditions when purified granzymes were delivered into living tumor cells and during lymphokine-activated killer cell-mediated attack. HnRNP K is essential for tumor cell viability, since knockdown of hnRNP K resulted in spontaneous tumor cell apoptosis with caspase activation and reactive oxygen species production. This apoptosis was more pronounced at low tumor cell density where hnRNP K knockdown also triggered a caspase-independent apoptotic pathway. This suggests that hnRNP K promotes tumor cell survival in the absence of cell-cell contact. Silencing of hnRNP K protein expression rendered tumor cells more susceptible to cellular cytotoxicity. We conclude that hnRNP K is indispensable for tumor cell viability and our data suggest that targeting of hnRNP K by granzymes contributes to or reinforces the cell death mechanisms by which cytotoxic lymphocytes eliminate tumor cells.  相似文献   

9.
Loh J  Thomas DA  Revell PA  Ley TJ  Virgin HW 《Journal of virology》2004,78(22):12519-12528
Gammaherpesviruses can establish lifelong latent infections in lymphoid cells of their hosts despite active antiviral immunity. Identification of the immune mechanisms which regulate gammaherpesvirus latent infection is therefore essential for understanding how gammaherpesviruses persist for the lifetime of their host. Recently, an individual with chronic active Epstein-Barr virus infection was found to have mutations in perforin, and studies using murine gammaherpesvirus 68 (gammaHV68) as a small-animal model for gammaherpesvirus infection have similarly revealed a critical role for perforin in regulating latent infection. These results suggest involvement of the perforin/granzyme granule exocytosis pathway in immune regulation of gammaherpesvirus latent infection. In this study, we examined gammaHV68 infection of knockout mice to identify specific molecules within the perforin/granzyme pathway which are essential for regulating gammaherpesvirus latent infection. We show that granzymes A and B and the granzyme B substrate, caspase 3, are important for regulating gammaHV68 latent infection. Interestingly, we show for the first time that orphan granzymes encoded in the granzyme B gene cluster are also critical for regulating viral infection. The requirement for specific granzymes differs for early versus late forms of latent infection. These data indicate that different granzymes play important and distinct roles in regulating latent gammaherpesvirus infection.  相似文献   

10.
11.
FbpA, a novel multifunctional Listeria monocytogenes virulence factor   总被引:6,自引:0,他引:6  
Listeria monocytogenes is a Gram-positive intracellular bacterium responsible for severe opportunistic infections in humans and animals. Signature-tagged mutagenesis (STM) was used to identify a gene named fbpA, required for efficient liver colonization of mice inoculated intravenously. FbpA was also shown to be required for intestinal and liver colonization after oral infection of transgenic mice expressing human E-cadherin. fbpA encodes a 570-amino-acid polypeptide that has strong homologies to atypical fibronectin-binding proteins. FbpA binds to immobilized human fibronectin in a dose-dependent and saturable manner and increases adherence of wild-type L. monocytogenes to HEp-2 cells in the presence of exogenous fibronectin. Despite the lack of conventional secretion/anchoring signals, FbpA is detected using an antibody generated against the recombinant FbpA protein on the bacterial surface by immunofluorescence, and in the membrane compartment by Western blot analysis of cell extracts. Strikingly, FbpA expression affects the protein levels of two virulence factors, listeriolysin O (LLO) and InlB, but not that of InlA or ActA. FbpA co-immunoprecipitates with LLO and InlB, but not with InlA or ActA. Thus, FbpA, in addition to being a fibronectin-binding protein, behaves as a chaperone or an escort protein for two important virulence factors and appears as a novel multifunctional virulence factor of L. monocytogenes.  相似文献   

12.
IFN-gamma is critical for innate immunity against Listeria monocytogenes (L. monocytogenes), and it has long been thought that NK cells are the major source of IFN-gamma during the first few days of infection. However, it was recently shown that a significant number of CD44highCD8+ T cells also secrete IFN-gamma in an Ag-independent fashion within 16 h of infection with L. monocytogenes. In this report, we showed that infection with other intracellular pathogens did not trigger this early IFN-gamma response and that cytosolic localization of Listeria was required to induce rapid IFN-gamma production by CD44highCD8+ T cells. Infection of C57BL/6 mice with an Escherichia coli strain expressing listeriolysin O (LLO), a pore-forming toxin from L. monocytogenes, also resulted in rapid IFN-gamma expression by CD8+ T cells. These results suggest that LLO expression is essential for induction of the early IFN-gamma response, although it is not yet clear whether LLO plays a direct role in triggering a signal cascade that leads to cytokine production or whether it is required simply to release other bacterial product(s) into the host cell cytosol. Interestingly, mouse strains that displayed a rapid CD8+ T cell IFN-gamma response (C57BL/6, 129, and NZB) all had lower bacterial burdens in the liver 3 days postinfection compared with mouse strains that did not have an early CD8+ T cell IFN-gamma response (BALB/c, A/J, and SJL). These data suggest that participation of memory CD8+ T cells in the early immune response against L. monocytogenes correlates with innate host resistance to infection.  相似文献   

13.
The facultative intracellular bacterium Listeria monocytogenes is an invasive pathogen that crosses the vascular endothelium and disseminates to the placenta and the central nervous system. Its interaction with endothelial cells is crucial for the pathogenesis of listeriosis. By infecting in vitro human umbilical vein endothelial cells (HUVEC) with L. monocytogenes, we found that wild-type bacteria induced the expression of the adhesion molecules (ICAM-1 and E-selectin), chemokine secretion (IL-8 and monocyte chemotactic protein-1) and NF-kappa B nuclear translocation. The activation of HUVEC required viable bacteria and was abolished in prfA-deficient mutants of L. monocytogenes, suggesting that virulence genes are associated with endothelial cell activation. Using a genetic approach with mutants of virulence genes, we found that listeriolysin O (LLO)-deficient mutants inactivated in the hly gene did not induce HUVEC activation, as opposed to mutants inactivated in the other virulence genes. Adhesion molecule expression, chemokine secretion and NF-kappa B activation were fully restored by a strain of Listeria innocua transformed with the hly gene encoding LLO. The relevance in vivo of endothelial cell activation for listerial pathogenesis was investigated in transgenic mice carrying an NF-kappa B-responsive lacZ reporter gene. NF-kappa B activation was visualized by a strong lacZ expression in endothelial cells of capillaries of mice infected with a virulent haemolytic strain, but was not seen in those infected with a non-haemolytic isogenic mutant. Direct evidence that LLO is involved in NF-kappa B activation in transgenic mice was provided by injecting intravenously purified LLO, thus inducing stimulation of NF-kappa B in endothelial cells of blood capillaries. Our results demonstrate that functional listeriolysin O secreted by bacteria contributes as a potent inflammatory stimulus to inducing endothelial cell activation during the infectious process.  相似文献   

14.
Single Ag-specific CD8+ T cells from IFN-gamma-deficient (GKO) or perforin-deficient (PKO) mice provide substantial immunity against murine infection with Listeria monocytogenes. To address the potential for redundancy between perforin and IFN-gamma as CD8+ T cell effector mechanisms, we generated perforin/IFN-gamma (PKO/GKO) double-deficient mice. PKO/GKO-derived CD8+ T cells specific for the immunodominant listeriolysin O (LLO91-99) epitope provide immunity to LM infection similar to that provided by Ag-matched wild-type (WT) CD8+ T cells in the liver but reduced in the spleen. Strikingly, polyclonal CD8+ T cells from immunized PKO/GKO mice were approximately 100-fold more potent in reducing bacterial numbers than the same number of polyclonal CD8+ T cells from immunized WT mice. This result is probably quantitative, because the frequency of the CD8+ T cell response against the immunodominant LLO91-99 epitope is >4.5-fold higher in PKO/GKO mice than WT mice at 7 days after identical immunizations. Moreover, PKO/GKO mice can be immunized by a single infection with attenuated Listeria to resist >80,000-fold higher challenges with virulent organisms than naive PKO/GKO mice. These data demonstrate that neither perforin nor IFN-gamma is required for the development or expression of adaptive immunity to LM. In addition, the results suggest the potential for perforin and IFN-gamma to regulate the magnitude of the CD8+ T cell response to infection.  相似文献   

15.
16.
Granule exocytosis is the main pathway for the immune elimination of virus-infected cells and tumour cells by cytotoxic T lymphocytes and natural killer cells. After target-cell recognition, release of the cytotoxic granule contents into the immunological synapse formed between the killer cell and its target induces apoptosis. The granules contain two membrane-perturbing proteins, perforin and granulysin, and a family of serine proteases known as granzymes, complexed with the proteoglycan serglycin. In this review, I discuss recent insights into the mechanisms of granule-mediated cytotoxicity, focusing on how granzymes A, B and C and granulysin activate cell death through caspase-independent pathways.  相似文献   

17.
Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that infects humans and animals. Its pathogenic strategy involves the expression of virulence proteins that mediate intracytosolic growth and cell-to-cell spread. A key virulence protein is the cholesterol-dependent cytolysin, listeriolysin O (LLO), which is largely responsible for mediating escape from the phagosome into the host cytosol. To study further the host processes exploited during L. monocytogenes infection, we sought to develop Drosophila S2 cells as a model for infection. Here, we show that S2 cells share a number of properties with mammalian cell culture models of infection. As with mouse macrophages, LLO was required for phagosomal escape from S2 cells. Furthermore, vacuolar escape was dependent on their acidification via the ATPase proton pumps, as bafilomycin A1 treatment sharply decreased escape. However, unlike in mouse macrophages, LLO mutants replicated in the phagosome of S2 cells. Drosophila cells are cholesterol auxotrophs, and exogenous cholesterol increased the infection rate of L. monocytogenes (LLO independent) and also augmented the efficiency of vacuolar escape (LLO dependent). With available genetic tools such as RNA interference, S2 cells could become an important model in the study of host-pathogen interactions.  相似文献   

18.
The granule exocytosis pathway of cytotoxic lymphocytes (Tc and NK cells) is critical for control of tumor development and viral infections. Granule-associated perforin and granzymes are key components in Tc cell-mediated function(s). On the basis of studies that showed granzymes A, B, C, K and M, to induce apoptosis in vitro, all granzymes were thought to also induce cell death in vivo. This review summarizes our present understanding of the biological processes elicited by purified granzyme A and granzyme as well as the processes induced by the more physiologically relevant cytotoxic cells secreting these proteases. The combined evidence supports the concept that the granule secretion pathway is not mono-specific but rather poly-functional including induction of pro-inflammatory cytokines, besides their widely appreciated apoptotic properties.  相似文献   

19.
20.
To elucidate potential roles of IL-15 in the maintenance of memory CD8+ T cells, we followed the fate of Ag-specific CD8+ T cells directly visualized with MHC class I tetramers coupled with listeriolysin O (LLO)(91-99) in IL-15 transgenic (Tg) mice after Listeria monocytogenes infection. The numbers of LLO(91-99)-positive memory CD8+ T cells were significantly higher at 3 and 6 wk after infection than those in non-Tg mice. The LLO(91-99)-positive CD8+ T cells produced IFN-gamma in response to LLO(91-99), and an adoptive transfer of CD8+ T cells from IL-15 Tg mice infected with L. monocytogenes conferred a higher level of resistance against L. monocytogenes in normal mice. The CD44+ CD8+ T cells from infected IL-15 Tg mice expressed the higher level of Bcl-2. Transferred CD44+ CD8+ T cells divided more vigorously in naive IL-15 Tg mice than in non-Tg mice. These results suggest that IL-15 plays an important role in long-term maintenance of Ag-specific memory CD8+ T cells following microbial exposure via promotion of cell survival and homeostatic proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号