首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extracellular ligand-binding domain (EPObp) of the human EPO receptor (EPOR) was expressed both in CHO (Chinese Hamster Ovary) cells and in Pichia pastoris. The CHO and yeast expressed receptors showed identical affinity for EPO binding. Expression levels in P. pastoris were significantly higher, favoring its use as an expression and scale-up production system. Incubation of EPO with a fourfold molar excess of receptor at high protein concentrations yielded stable EPO-EPObp complexes. Quantification of EPO and EPObp in the complex yielded a molar ratio of one EPO molecule to two receptor molecules. Residues that are responsible for EPOR glycosylation and isomerization in Pichia were identified and eliminated by site-specific mutagenesis. A thiol modification was identified and a method was developed to remove the modified species from EPObp. EPObp was complexed with erythropoietin (EPO) and purified. The complex crystallized in two crystal forms that diffracted to 2.8 and 1.9 A respectively. (Form 1 and form 2 crystals were independently obtained at AxyS Pharmaceuticals, Inc. and Amgen, Inc. respectively.) Both contained one complex per asymmetric unit with a stoichiometry of two EPObps to one EPO.  相似文献   

2.
The cytoplasmic domain of the cloned erythropoietin (EPO) receptor (EPOR) contains no protein kinase motif, yet addition of EPO to EPO-responsive cells causes an increase in protein-tyrosine phosphorylation. Here we show that addition of EPO or interleukin-3 (IL-3) to an IL-3-dependent cell line expressing the wild-type EPOR causes a small fraction (less than 5%) of total cellular EPOR to shift in gel mobility from 66 to 72 kDa, due at least in part to phosphorylation. Using biotinylated EPO as an affinity reagent, we show that the 72-kDa species is greatly enriched on the cell surface. To demonstrate that a protein kinase activity associates with cell surface EPOR, cells were incubated with biotinylated EPO and then cross-linked with a thiol-cleavable chemical cross-linker. The avidin-agarose-selected complexes were incubated with [gamma-32P]ATP. After in vitro phosphorylation and denaturation without reducing agent, both antiphosphotyrosine and anti-EPOR antibodies immunoprecipitated labeled 72-kDa EPOR and an unidentified 130-kDa phosphoprotein (pp130), indicating that a protein kinase is associated with cell surface EPOR and that a fraction of the EPOR was phosphorylated on tyrosine residues either in the cells or during the cell-free phosphorylation reaction. Under reducing conditions, the 72-kDa phosphorylated EPOR but not pp130 was immunoprecipitated with an anti-EPOR antibody, suggesting that the pp130 is bound to the EPOR by the thiol-cleavable chemical cross-linker. Previously, we showed that deletion of the 42 carboxy-terminal amino acids of the EPOR allows cells to grow in 1/10 the normal EPO concentration, without affecting receptor number or affinity. Two carboxy-terminal truncated EPO receptors that are hyperresponsive to EPO were poorly phosphorylated during the in vitro reaction, suggesting that the carboxy-terminal region of the EPOR contains a site for phosphorylation or a site for interaction with a protein kinase. Our data suggests that phosphorylation or interaction with a protein kinase in the carboxy-terminal region may down-modulate the proliferative action of the EPOR.  相似文献   

3.
A rapid, functional assay in frog melanophore cells for the erythropoietin receptor (EPOR), a member of the cytokine receptor family, is demonstrated. A chimeric receptor that comprised the extracellular portion of the murine EPOR and the transmembrane and intracellular domains of the human epidermal growth factor receptor (EGFR) was subcloned into the expression vector pJG3.6. When the full-length EGFR was expressed in melanophores, EGF but not EPO mediated pigment dispersion in a time- and dose-dependent manner with an EC50 of 12.6 6 2.9 pM. However, when the chimeric EPOR/EGFR was expressed, EPO but not EGF stimulated pigment dispersion in a time- and dose-dependent manner with an EC50 of 380 6 107 pM. Neither EGF nor EPO had any effect on pigment dispersion in wild-type melanophores. EGF- and EPO-mediated pigment dispersion was blocked by the bis-indolylmaleimide protein kinase C inhibitor Ro 31-8220. This study extends the use of the melanophore-based bioassay to include cytokine receptors in addition to G protein- and tyrosine kinase-coupled receptors. It represents a potentially powerful method for screening of combinatorial libraries to identify novel small molecule agonists and antagonists to this clinically important class of binding sites as well as performing studies of functional ligand-receptor interactions.  相似文献   

4.
Triggering of 4-1BB, a member of the TNFR family, through in vivo administration of agonistic anti-4-1BB Ab delivers a powerful costimulatory signal to CTL. We found this signal to effectively replace the need for CD4(+) T cell help in the cross-priming of tumor-specific CTL immunity. Furthermore, 4-1BB Ab can convert an otherwise tolerogenic peptide vaccine into a formulation capable of efficient CTL priming. Initial activation of naive CTL can occur in the absence of 4-1BB costimulation, but this signal permits increased survival of Ag-stimulated CTL. Because naive CTL do not express 4-1BB at their surface, susceptibility to 4-1BB triggering depends on prior up-regulation of this receptor. We show that this requires both stimulation of the TCR and CD28-dependent costimulation. Accordingly, blockade of the CD28-costimulatory pathway abrogates the capacity of agonistic anti-4-1BB Ab to trigger Th-independent CTL immunity. In conclusion, our data reveal that the 4-1BB-mediated survival signal is positioned downstream of Ag-specific TCR triggering and CD28-dependent costimulation of naive CTL. The powerful effects of 4-1BB triggering on the induction, amplification, and persistence of CTL responses provide a novel strategy for increasing the potency of vaccines against cancers.  相似文献   

5.
The human progesterone receptor (PR) binding affinity and the PR agonistic or antagonistic potency of tetrahydronaphthofuranone derivatives were shown previously to be markedly influenced by substituents at the 6- and 7-positions. Here, we synthesized tetrahydrobenzindolones possessing a lactam ring, which enabled us to modify the 6- and 7-positions more freely, since tetrahydrobenzindolones are chemically more stable than tetrahydronaphthofuranones. The tetrahydrobenzindolone derivatives generally showed higher PR binding affinity than the corresponding tetrahydronaphthofuranones. We also succeeded in separating the agonistic and antagonistic activities by choosing suitable substituent groups at the 6- and/or 7-position(s) of the tetrahydrobenzindolone. The effects of representative agonists, 12c (CP8668), and 14a (CP8816), and a representative antagonist, 15f (CP8661), were confirmed in in vivo tests. In this report, we mainly describe the synthesis and structure-activity relationships (SAR) of tetrahydrobenzindolone derivatives, as new nonsteroidal PR ligands.  相似文献   

6.
A peptide with very high specificity for the human melanocortin MC(1) receptor identified by phage display was used as a lead for the design of new peptides. Two new peptides, MS05 and MS09, were synthesized and found to bind with sub-nanomolar affinities to the MC(1) receptor. Both these peptides showed strong agonistic activity at the MC(1) receptor. The MS05 was the most MC(1) receptor selective as it showed virtually no binding affinity for the MC(4) and MC(5) receptors and only micromolar affinity for the MC(3) receptor. The selectivity and potency of the new peptides make them potent tools for studies of MC(1) receptors, as well as novel potential candidate drugs for the treatment of inflammatory conditions.  相似文献   

7.
Acute kidney injury (AKI) is a very common complication with high morbidity and mortality rates and no fundamental treatment. In this study, we investigated whether the hepatocyte growth factor (HGF)/cMet pathway is associated with the development of AKI and how the administration of a cMet agonistic antibody (Ab) affects an AKI model. In the analysis using human blood samples, cMet and HGF levels were found to be significantly increased in the AKI group, regardless of underlying renal function. The administration of a cMet agonistic Ab improved the functional and histological changes after bilateral ischaemia-reperfusion injury. TUNEL-positive cells and Bax/Bcl-2 ratio were also reduced by cMet agonistic Ab treatment. In addition, cMet agonistic Ab treatment significantly increased the levels of PI3K, Akt and mTOR. Furthermore, after 24 hours of hypoxia induction in human proximal tubular epithelial cells, treatment with the cMet agonistic Ab also showed dose-dependent antiapoptotic effects similar to those of the recombinant HGF treatment. Even when the HGF axis was blocked with a HGF-blocking Ab, the cMet agonistic Ab showed an independent dose-dependent antiapoptotic effect. In conclusion, cMet expression is associated with the occurrence of AKI. cMet agonistic Ab treatment attenuates the severity of AKI through the PI3K/Akt/mTOR pathway and improves apoptosis. cMet agonistic Ab may have important significance for the treatment of AKI.  相似文献   

8.
A series of analogs of the ORL1 receptor antagonist [Nphe1]-NC(1-13)-NH2 was prepared and tested for agonistic and antagonistic activities in the mouse vas deferens, a preparation that shows high sensitivity to nociceptin and related peptides. The purpose of this study was to determine the role of the aromatic residue at the N-terminal for antagonism and eventually identify compounds with improved potency. Results indicated that all 23 compounds are inactive as agonists, and the antagonistic potency of the initial template [Nphe1]-NC(1-13)-NH2 is high (pKB 6.43) compared with those of all other compounds except [(S)(betaMe)Nphe1]NC(1-13)-NH2 (pK(B) 6.48). The other 22 compounds can be divided into two groups: 10 show antagonistic potencies (pK(B)) ranging from 5.30 to 5.86, whereas the other 12 compounds are inactive. This study clearly shows that the aromatic ring of Nphe is very critical for the interaction with the ORL1 receptor and can not be enlarged or sterically modified without significant loss of antagonistic potency.  相似文献   

9.
The role of the N-terminal domains of corticotropin-releasing factor (CRF) and CRF-like peptides in receptor subtype selectivity, ligand affinity and biological potency was investigated. Therefore, human CRF(12-41), human URP(12-38) and antisauvagine-30 (aSvg) were N-terminally prolonged by consecutive addition of one or two amino acids. The peptides obtained were tested for their binding affinities to rat CRF1 and murine CRF(2beta) receptor, and their capability to stimulate cAMP-release by HEK cells producing either receptor.It was observed that human CRF N-terminally truncated by eight residues was bound with high affinity to CRF2 receptor (Ki=5.4nM), whereas affinity for CRF1 receptor was decreased (Ki=250 nM). A similar shift of affinity was found with sauvagine (Svg) analogs. Truncation of human URP analogs did not affect their preference for CRF(2beta) receptor, but reduced their affinity. Changes in affinity were positively correlated with changes in potency. These results indicated that CRF1 receptor was more stringent in its structural requirements for ligands to exhibit high affinity binding than CRF(2beta) receptor.  相似文献   

10.
11.
12.
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.  相似文献   

13.
14.
The binding affinity and relative estrogenic potency of 2-bromo-, 4-bromo-, 2-methyl- and 4-methylestradiol was evaluated in MCF-7 breast cancer cells. The relative binding affinities compared to estradiol were 47% for 2-methyl-, 25% for 4-methyl-, 37% for 4-bromo- and 17% for 2-bromoestradiol. However, both 2- and 4-methyl- as well as 2- and 4-bromoestradiol were able (a) to translocate the cytosolic estrogen receptor into the nucleus and (b) to induce the progesterone receptor in a concentration dependent manner. Finally, all ring-A substituted estrogens used in this study induced the pS2 mRNA as demonstrated by Northern-blotting. From these findings we conclude that 2-bromo-, 4-bromo-, 2-methyl- and 4-methylestradiol are agonistic ligands for the estrogen receptor in MCF-7 breast cancer cells.  相似文献   

15.
The immunophilin, FK506-binding protein (FKBP12), is an essential component of the ryanodine receptor channel complex of skeletal muscle (RyR1) and modulates intracellular calcium signaling from the nedoplasmic reticulum. The cardiac muscle RyR isoform (RyR2) specifically associates with a distinct FKBP isoform, FKBP12.6. Previous studies have led to the proposal that the central domain of RyR1 exclusively mediates the interaction with FKBP12. To characterize the topography of the FKBP 12.6 binding site on the human cardiac RyR2, we have applied complementary protein-protein interaction methods using both in vivo yeast two-hybrid analysis and in vitro immunoprecipitation experiments. Our results indicate an absence of interaction of FKBP12/12.6 with fragments containin the central domain of either RyR1, RyR2, or RyR3. Furthermore, no interaction was detected between FKBP12.6 with a series of overlapping fragments encompassing the entire RyR2, either individually or in multiple combination. We also found that a distinct, alternatively spliced variant of FKBP12.6 was unable to interact with RyR. In contrast, we successfully demonstrated a robust association between the cytoplasmic domain of transforming growth factor-β receptor type I and both FKBP12 and FKBP12.6 in parallel positive control experiments, as well as between native RyR2 and FKBP12.6. These results suggest that the specific interaction of FKBP12.6 with RyR2, and generally of FKBPs with any RyR isoform, is not readily reconstituted by peptide fragments corresponding to central RyR domains. Further structural analysis will be necessary to unravel this intricate signaling system and the current model of FKBP-12-RyR interaction via a single, central RyR, epitope may therefore require revision.  相似文献   

16.
Erythropoietin (EPO), the primary regulator of mammalian erythropoiesis, binds and activates a specific receptor on erythroid progenitors. The human and mouse cDNAs for this receptor (EPOR) have recently been isolated. These cDNAs were used to establish the genomic location of the EPOR gene. By somatic cell hybrid analysis, the locus for the EPOR maps to human chromosome (Chr) 19pter-q12. By interspecific backcross mapping the locus is tightly linked to the murine Ldlr locus near the centromere of mouse Chr9. This region of mouse Chr9 is homologous to a region of human Chr 19p13 carrying the human LDLR and MEL loci, strongly suggesting that the human EPOR gene is at 19p13 near the human LDLR locus.  相似文献   

17.
Four hybrid molecules (1 and 12-14) of caffeine and eudistomin D, a beta-carboline alkaloid from a marine tunicate, were synthesized, and their affinity and selectivity for adenosine receptors A(1), A(2A), and A(3) were examined. It was found that all the compounds showed better potency as adenosine receptor ligands as compared with caffeine. Among them, a compound (13) possessing a nitrogen at the delta-position of the pyridine ring (delta-N type) showed the most potent affinity for adenosine receptor A(3) subtype, while N-methylation (14) of a pyrrole ring in 13 significantly lowered the potency as adenosine receptor ligands. Compounds (1 and 12) having a nitrogen at the beta-position of the pyridine ring (beta-N type) showed lower affinity than the corresponding delta-N type compounds (13 and 14), while compounds (10, 11, and 17) lacking a pyrrole ring between the pyridine and pyrimidine rings exhibited almost no affinity to the adenosine receptor subtypes examined.  相似文献   

18.
Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1,Val1,Asn2, Gln3,His4,Ser8, His9,Glu12,Tyr15,Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has greater than 1,000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3,Ala4]IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15,Leu16]IGF-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. This peptide is also equipotent to hIGF-I at the types 1 and 2 IGF receptors. The peptide in which these four-point mutations are combined, [Gln3,Ala4,Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. This peptide has 10-fold increased potency for the insulin receptor, but is equipotent to hIGF-I at the types 1 and 2 IGF receptors. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, these peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.  相似文献   

19.
LTB4-induced proinflammatory responses in PMN including chemotaxis, chemokinesis, aggregation and degranulation are thought to be initiated through the binding of LTB4 to membrane receptors. To explore further the nature of this binding, we have established a receptor binding assay to investigate the structural specificity requirements for agonist binding. Human PMN plasma membrane was enriched by homogenization and discontinuous sucrose density gradient purification. [3H]-LTB4 binding to the purified membrane was dependent on the concentration of membrane protein and the time of incubation. At 20 degrees C, binding of [3H]-LTB4 to the membrane receptor was rapid, required 8 to 10 min to reach a steady-state and remained stable for up to 50 min. Equilibrium saturation binding studies showed that [3H]-LTB4 bound to high affinity (dissociation constant, Kd = 1.5 nM), and low capacity (density, Bmax = 40 pmol/mg protein) receptor sites. Competition binding studies showed that LTB4, LTB4-epimers, 20-OH-LTB4, 2-nor-LTB4, 6-trans-epi-LTB4 and 6-trans-LTB4, in decreasing order of affinity, bound to the [3H]-LTB4 receptors. The mean binding affinities (Ki) of these analogs were 2, 34, 58, 80, 1075 and 1275 nM, respectively. Thus, optimal binding to the receptors requires stereospecific 5(S), 12(R) hydroxyl groups, a cis-double bond at C-6, and a full length eicosanoid backbone. The binding affinity and rank-order potency of these analogs correlated with their intrinsic agonistic activities in inducing PMN chemotaxis. These studies have demonstrated the existence of high affinity, stereoselective and specific receptors for LTB4 in human PMN plasma membrane.  相似文献   

20.
We have previously reported the essential structure of the opioid κ receptor agonist nalfurafine hydrochloride (TRK-820) for binding to the κ receptor. In the course of this study, we focused on the effect of the substituent at 17-N in nalfurafine on the binding affinity for the κ receptor. The exchange of the 17-N substituent in nalfurafine from cyclopropylmethyl to fluoro-substituted alkyl groups, which are strong electron withdrawing substituents, almost completely diminished the binding affinities for the μ and δ opioid receptors, but the binding affinity for the κ receptor was still maintained. As a result, nalfurafine derivatives with 17-fluoro-substituted alkyl groups showed higher selectivities for the κ receptor than did nalfurafine itself. With regard to the κ agonistic activities, the conversion of the 17-N substituent in nalfurafine from cyclopropylmethyl to fluoro-substituted alkyl groups led to the gradual decrease of the agonistic activities in the order corresponding to their binding affinities for the κ receptor. In contrast, the derivative with the bulky 17-isobutyl group showed lower affinity and agonistic activity for the κ receptor than the derivatives with the smaller functional groups. This research suggested that both the electronic property and the steric characteristics of the 17-N substituent would have a great influence on the binding property for the κ receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号