首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hallmark of acute allograft rejection is infiltration of the inflamed graft by circulating leukocytes. We studied the role of fractalkine (FKN) and its receptor, CX(3)CR1, in allograft rejection. FKN expression was negligible in nonrejecting cardiac isografts but was significantly enhanced in rejecting allografts. At early time points, FKN expression was particularly prominent on vascular tissues and endothelium. As rejection progressed, FKN expression was further increased, with prominent anti-FKN staining seen around vessels and on cardiac myocytes. To determine the capacity of FKN on endothelial cells to promote leukocyte adhesion, we performed adhesion assays with PBMC and monolayers of TNF-alpha-activated murine endothelial cells under low-shear conditions. Treatment with either anti-FKN or anti-CX(3)CR1-blocking Ab significantly inhibited PBMC binding, indicating that a large proportion of leukocyte binding to murine endothelium occurs via the FKN and CX(3)CR1 adhesion receptors. To determine the functional significance of FKN in rejection, we treated cardiac allograft recipients with daily injections of anti-CX(3)CR1 Ab. Treatment with the anti-CX(3)CR1 Ab significantly prolonged allograft survival from 7 +/- 1 to 49 +/- 30 days (p < 0.0008). These studies identify a critical role for FKN in the pathogenesis of acute rejection and suggest that FKN may be a useful therapeutic target in rejection.  相似文献   

2.

Background

Aggregates formed between leukocytes and platelets in the circulation lead to release of tissue factor (TF)–bearing microparticles contributing to a prothrombotic state. As enterohemorrhagic Escherichia coli (EHEC) may cause hemolytic uremic syndrome (HUS), in which microthrombi cause tissue damage, this study investigated whether the interaction between blood cells and EHEC virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS) led to release of TF.

Methodology/Principal Findings

The interaction between Stx or LPS and blood cells induced platelet-leukocyte aggregate formation and tissue factor (TF) release, as detected by flow cytometry in whole blood. O157LPS was more potent than other LPS serotypes. Aggregates formed mainly between monocytes and platelets and less so between neutrophils and platelets. Stimulated blood cells in complex expressed activation markers, and microparticles were released. Microparticles originated mainly from platelets and monocytes and expressed TF. TF–expressing microparticles, and functional TF in plasma, increased when blood cells were simultaneously exposed to the EHEC virulence factors and high shear stress. Stx and LPS in combination had a more pronounced effect on platelet-monocyte aggregate formation, and TF expression on these aggregates, than each virulence factor alone. Whole blood and plasma from HUS patients (n = 4) were analyzed. All patients had an increase in leukocyte-platelet aggregates, mainly between monocytes and platelets, on which TF was expressed during the acute phase of disease. Patients also exhibited an increase in microparticles, mainly originating from platelets and monocytes, bearing surface-bound TF, and functional TF was detected in their plasma. Blood cell aggregates, microparticles, and TF decreased upon recovery.

Conclusions/Significance

By triggering TF release in the circulation, Stx and LPS can induce a prothrombotic state contributing to the pathogenesis of HUS.  相似文献   

3.
Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.  相似文献   

4.
Fractalkine (FKN/CX3CL1) is a unique member of the chemokine gene family and contains a chemokine domain (CD), a mucin-like stalk, a single transmembrane region, and a short intracellular C terminus. This structural distinction affords FKN the property of mediating capture and firm adhesion of FKN receptor (CX3CR1)-expressing cells under physiological flow conditions. Shed forms of FKN also exist, and these promote chemotaxis of CX3CR1-expressing leukocytes. The goal of the present study was to identify specific residues within the FKN-CD critical for FKN-CX3CR1 interactions. Two residues were identified in the FKN-CD, namely Lys-7 and Arg-47, that are important determinants in mediating an FKN-CX3CR1 interaction. FKN-K7A and FKN-R47A mutants exhibited 30-60-fold decreases in affinity for CX3CR1 and failed to arrest efficiently CX3CR1-expressing cells under physiological flow conditions. However, these mutants had differential effects on chemotaxis of CX3CR1-expressing cells. The FKN-K7A mutant acted as an equipotent partial agonist, whereas the FKN-R47A mutant had marked decreased potency and efficacy in measures of chemotactic activity. These data identify specific structural features of the FKN-CD that are important in interactions with CX3CR1 including steady state binding, signaling, and firm adhesion of CX3CR1-expressing cells.  相似文献   

5.
Although expression of the fractalkine (CX3CL1, FKN) is enhanced in inflamed tissues, it is detected at steady state in various organs such as the intestine, and its receptor CX3CR1 is highly expressed in resident-type dendritic cells and macrophages. We hypothesized that FKN might regulate the inflammatory responses of these cells. Therefore, murine macrophages were pretreated with FKN and then stimulated with LPS. We found that macrophages pretreated with 0.03 nM FKN but not with 3 nM FKN secreted 50% less TNF-alpha than did cells treated with LPS alone. Cells treated with 0.03 nM FKN and LPS also showed reduced phosphorylation of ERK1/2 and reduced NF-kappaB p50 subunit. Interestingly, the p65 subunit of NF-kappaB was translocated to the nuclei but redistributed to the cytoplasm in the early phase by forming a complex with peroxisome proliferator-activated receptor (PPAR) gamma. Exogenous 15-deoxy-Delta(12,14)-prostaglandin J2, a natural ligand for PPAR-gamma, also induced redistribution of p65 with decreased TNF-alpha secretion after LPS challenge. Pretreatment with 0.03 nM but not 3 nM FKN increased the cellular levels of 15-deoxy-Delta(12,14)-prostaglandin J2 as well as mRNA of PPAR-gamma. Requirement of PPAR-gamma for the effect of 0.03 nM FKN was confirmed by small interfering RNA of PPAR-gamma. In contrast, pretreatment with 3 nM FKN induced higher levels of IL-23 compared with cells pretreated with 0.03 nM FKN and produced TNF-alpha in a CX3CR1-dependent manner. These dose-dependent differential effects of FKN establish its novel role in immune homeostasis and inflammation.  相似文献   

6.
Fractalkine (FKN, CX3CL1) is a regulator of leukocyte recruitment and adhesion, and controls leukocyte migration on endothelial cells (ECs). We show that FKN triggers different effects in CD16+ and CD16 monocytes, the two major subsets of human monocytes. In the presence of ECs a lipopolysaccharide (LPS)-stimulus led to a significant increase in tumor necrosis factor (TNF)-secretion by CD16+ monocytes, which depends on the interaction of CX3CR1 expressed on CD16+ monocytes with endothelial FKN. Soluble FKN that was efficiently shed from the surface of LPS-activated ECs in response to binding of CD16+ monocytes to ECs, diminished monocyte adhesion in down-regulating CX3CR1 expression on the surface of CD16+ monocytes resulting in decreased TNF-secretion. In this process the TNF-converting enzyme (TACE) acts as a central player regulating FKN-shedding and TNFα-release through CD16+ monocytes interacting with ECs. Thus, the release and local accumulation of sFKN represents a mechanism that limits the inflammatory potential of CD16+ monocytes by impairing their interaction with ECs during the initial phase of an immune response to LPS. This regulatory process represents a potential target for therapeutic approaches to modulate the inflammatory response to bacterial components.  相似文献   

7.
Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7   总被引:3,自引:0,他引:3  
Several serotypes of Escherichia coli produce protein toxins closely related to Shiga toxin (Stx) from Shigella dysenteriae serotype 1. These Stx-producing E. coli cause outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in humans, with the latter being more likely if the E. coli produce Stx2 than if they only produce Stx1. To investigate the differences among the Stxs, which are all AB(5) toxins, the crystal structure of Stx2 from E. coli O157:H7 was determined at 1.8-A resolution and compared with the known structure of Stx. Our major finding was that, in contrast to Stx, the active site of the A-subunit of Stx2 is accessible in the holotoxin, and a molecule of formic acid and a water molecule mimic the binding of the adenine base of the substrate. Further, the A-subunit adopts a different orientation with respect to the B-subunits in Stx2 than in Stx, due to interactions between the carboxyl termini of the B-subunits and neighboring regions of the A-subunit. Of the three types of receptor-binding sites in the B-pentamer, one has a different conformation in Stx2 than in Stx, and the carboxyl terminus of the A-subunit binds at another. Any of these structural differences might result in different mechanisms of action of the two toxins and the development of hemolytic uremic syndrome upon exposure to Stx2.  相似文献   

8.
Shiga toxin (Stx)-producing E.coli O157:H7 has become a global threat to public health; it is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure with thrombi occluding renal microcirculation. In this study, we explored whether Stx triggers complement-dependent microvascular thrombosis in in vitro and in vivo experimental settings of HUS. Stx induced on human microvascular endothelial cell surface the expression of P-selectin, which bound and activated C3 via the alternative pathway, leading to thrombus formation under flow. In the search for mechanisms linking complement activation and thrombosis, we found that exuberant complement activation in response to Stx generated an increased amount of C3a that caused further endothelial P-selectin expression, thrombomodulin (TM) loss, and thrombus formation. In a murine model of HUS obtained by coinjection of Stx2 and LPS and characterized by thrombocytopenia and renal dysfunction, upregulation of glomerular endothelial P-selectin was associated with C3 and fibrin(ogen) deposits, platelet clumps, and reduced TM expression. Treatment with anti-P-selectin Ab limited glomerular C3 accumulation. Factor B-deficient mice after Stx2/LPS exhibited less thrombocytopenia and were protected against glomerular abnormalities and renal function impairment, indicating the involvement of complement activation via the alternative pathway in the glomerular thrombotic process in HUS mice. The functional role of C3a was documented by data showing that glomerular fibrin(ogen), platelet clumps, and TM loss were markedly decreased in HUS mice receiving C3aR antagonist. These results identify Stx-induced complement activation, via P-selectin, as a key mechanism of C3a-dependent microvascular thrombosis in diarrhea-associated HUS.  相似文献   

9.
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies.  相似文献   

10.
Shiga toxin-producing E. coli O157 and non-O157 are important emergance pathogens that can cause diarrhea and hemorrhagic colitis with life-threatening complications, such as hemolytic uremic syndrome (HUS). A few cases of EHEC infections are documented per year in Poland. Among them only one patient with EHEC O157 infection developed HUS. We characterized the first VTEC non-O157 strain isolated from child with HUS in Poland. The VTEC O111 strain produced Stx2 which was cytotoxic for Vero cell. Using DNA microarray analysis we have found set of virulence genes in VTEC O111 strain as: stx2A, stx2B, ehly, eae, tir tccP espA, espJ, cif nleA, nleB, lpfA, iha, efa1, cba. The strain was fenotypic resistant to streptomycin, tetracyclin and sulphonamides (strA, tetA, sul2 genes were detected).  相似文献   

11.
Gastrointestinal infection with Shiga toxins producing enterohemorrhagic Escherichia coli causes the spectrum of gastrointestinal and systemic complications, including hemorrhagic colitis and hemolytic uremic syndrome, which is fatal in ~10% of patients. However, the molecular mechanisms of Stx endocytosis by enterocytes and the toxins cross the intestinal epithelium are largely uncharacterized. We have studied Shiga toxin 1 entry into enterohemorrhagic E. coli-infected intestinal epithelial cells and found that bacteria stimulate Shiga toxin 1 macropinocytosis through actin remodeling. This enterohemorrhagic E. coli-caused macropinocytosis occurs through a nonmuscle myosin II and cell division control 42 (Cdc42)-dependent mechanism. Macropinocytosis of Shiga toxin 1 is followed by its transcytosis to the basolateral environment, a step that is necessary for its systemic spread. Inhibition of Shiga toxin 1 macropinocytosis significantly decreases toxin uptake by intestinal epithelial cells and in this way provides an attractive, antibiotic-independent strategy for prevention of the harmful consequences of enterohemorrhagic E. coli infection.  相似文献   

12.
The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS.  相似文献   

13.
It has been suggested the the interaction of Escherichia coli O157-derived verotoxins (VTs) with the vascular endothelium plays a central role in the pathogenesis of the thrombotic microangiopathy and ischemic lesions characteristic of hemolytic uremic syndrome (HUS) and E. coli O157-associated hemorrhagic colitis. Intravenous administration of both E. coli O157-derived VT1 and lipopolysaccharide (LPS) in the rat induced a synergistic increase in thiobarbituric acid (TBA) values in those animal's plasma, as compared with that injected with VT1 or LPS alone. We then hypothesized that an increase in lipid peroxidation in the rat plasma was due to an enhanced production of endothelial cell-derived reactive oxidant. Based on determination of rat sera and cultured human aortic endothelial cells (HAECs), VT1 had little if any effect on LPS-stimulated increase of nitric oxide and the resultant peroxynitrite generations. Both RT-PCR and Western blot studies of reactive oxygen species-related enzymes showed that VT1 markedly decreased the expression of catalase mRNA and protein in HAECs, but caused less alteration in the levels of Cu, Zn-superoxide dismutase, and NADPH oxidase mRNA. Further studies by spin trapping analysis using 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) revealed a time-dependent increase in hydroxyl radicals by VT1 in HAECs. The accumulated data thus suggest that bacterial VT1 reduces mainly catalase levels in endothelial cells, which is synergistically potentiated by LPS, and that the resulting hydroxyl radical participates in endothelium injury through a marked enhancement of lipid peroxidation, leading to HUS.  相似文献   

14.
Probiotics are known to have an inhibitory effect against the growth of various foodborne pathogens, however, the specific role of probiotics in Shiga-toxin-producing Escherichia coli (STEC) virulence gene expression has not been well defined. Shiga toxins are members of a family of highly potent bacterial toxins and are the main virulence marker for STEC. Shiga toxins inhibit protein synthesis in eukaryotic cells and play a role in hemorrhagic colitis and hemolytic uremic syndrome. STEC possesses Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2), both of which have A and B subunits. Although STEC containing both Stx1 and Stx2 has been isolated from patients with hemorrhagic colitis, Stx2 is more frequently associated with human disease complications. Thus, the effect of Lactobacillus, Pediococcus, and Bifidobacterium strains on stx2A expression levels in STEC was investigated. Lactic acid bacteria and bifidobacteria were isolated from farm animals, dairy, and human sources and included L. rhamnosus GG, L. curvatus, L. plantarum, L. jensenii, L. acidophilus, L. casei, L. reuteri, P. acidilactici, P. cerevisiae, P. pentosaceus, B. thermophilum, B. boum, B. suis and B. animalis. E. coli O157:H7 (EDL 933) was coincubated with sub-lethal concentrations of each probiotic strain. Following RNA extraction and cDNA synthesis, relative stx2A mRNA levels were determined according to a comparative critical threshold (Ct) real-time PCR. Data were normalized to the endogenous control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the level of stx2A expression between treated and untreated STEC was compared. Observed for all probiotic strains tested, stx2A was down-regulated, when compared to the control culture. Probiotic production of organic acids, as demonstrated by a decrease in pH, influenced stx2A gene expression.  相似文献   

15.
Shiga toxin (Stx) is one of the most critical factors in the development of hemolytic uremic syndrome and other systemic complications following enterohemorrhagic Escherichia coli (EHEC) infection. Substances neutralizing Stx by interfering with toxin-receptor binding have been explored as therapeutic candidates for EHEC infection. In this study, we examined globotriaosyl (Gb3), galabiosyl (Gb2) and galacto-trehalose, each of which was synthetically conjugated with a polyacrylamide backbone, for Stxneutralizing activity. Galacto-trehalose was designed as a Gb2 mimicking, unnatural Stx-ligand that was expected to show tolerance to enzymatic degradation in vivo. Galacto-trehalose copolymer showed neutralizing activity against Stx-1 but not Stx-2 in a HeLa cell cytotoxicity assay. It was thought that galactotrehalose copolymer could be a lead compound for the treatment of Stx-mediated diseases, although it requires modification to show neutralizing activity to Stx-2. The Gb3 copolymer with high sugar unit density showed stronger neutralizing activity against Stx-2 than those with lower density. However, the density-dependency of the neutralizing activity was less obvious against Stx-1. Intravenous administration of the Gb3 copolymer prevented death in mice lethally infected with Stx-1- and Stx-2-producing E. coli O157:H7. Thus, we demonstrated that the artificial Gb3 copolymer could neutralize Stx-1 and the more clinically relevant Stx-2 in vitro and effectively inhibit Stx toxicity in vivo.  相似文献   

16.
Although it is known that septic shock rapidly induces immune dysfunctions, which contribute to the impaired clearance of microorganisms observed in patients, the mechanisms for this phenomenon remain incompletely understood. We recently observed, in a microarray study, an altered circulating leukocyte CX3CR1 mRNA expression associated with patients' mortality. As monocytes play a central role in septic shock pathophysiology and express high levels of CX3CR1, we therefore further investigated the alteration of CX3CR1 expression and of its ligand fractalkine (CX3CL1) on those cells in this clinical condition. We observed that CX3CR1 expression (both mRNA and protein) was severely down-regulated in monocytes and consequently associated with a lack of functionality upon fractalkine challenge. Importantly, nonsurvivors presented with significantly sustained lower expression in comparison with survivors. This down-regulation was reproduced by incubation of cells from healthy individuals with LPS, whole bacteria (Escherichia coli and Staphylococcus aureus), and, to a lower extent, with corticosteroids-in accordance with the concept of LPS-induced monocyte deactivation. In addition, CX3CL1 serum concentrations were elevated in patients supporting the hypothesis of increased cleavage of the membrane-anchored form expressed by endothelial cells. As CX3CR1/CX3CL1 interaction preferentially mediates arrest and migration of proinflammatory cells, the present observations may contribute to patients' inability to kill invading microorganisms. This could represent an important new feature of sepsis-induced immunosuppression.  相似文献   

17.
Shiga toxins (Stx) are the main virulence factors in enterohemorrhagic Escherichia coli (EHEC) infections, causing diarrhea and hemolytic uremic syndrome (HUS). The genes encoding for Shiga toxin-2 (Stx2) are located in a bacteriophage. The toxin is formed by a single A subunit and five B subunits, each of which has its own promoter sequence. We have previously reported the expression of the B subunit within the eukaryotic environment, probably driven by their own promoter. The aim of this work was to evaluate the ability of the eukaryotic machinery to recognize stx2 sequences as eukaryotic-like promoters. Vero cells were transfected with a plasmid encoding Stx2 under its own promoter. The cytotoxic effect on these cells was similar to that observed upon incubation with purified Stx2. In addition, we showed that Stx2 expression in Stx2-insensitive BHK eukaryotic cells induced drastic morphological and cytoskeletal changes. In order to directly evaluate the capacity of the wild promoter sequences of the A and B subunits to drive protein expression in mammalian cells, GFP was cloned under eukaryotic-like putative promoter sequences. GFP expression was observed in 293T cells transfected with these constructions. These results show a novel and alternative way to synthesize Stx2 that could contribute to the global understanding of EHEC infections with immediate impact on the development of treatments or vaccines against HUS.  相似文献   

18.
The AB(5) toxin Shiga toxin 2 (Stx2) has been implicated as a major virulence factor of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains in the progression of intestinal disease to more severe systemic complications. Here, we demonstrate that supernatant from a normal E. coli isolate, FI-29, neutralizes the effect of Stx2, but not the related Stx1, on Vero cells. Biochemical characterization of the neutralizing activity identified the lipopolysaccharide (LPS) of FI-29, a serogroup O107/O117 strain, as the toxin-neutralizing component. LPSs from FI-29 as well as from type strains E. coli O107 and E. coli O117 were able bind Stx2 but not Stx1, indicating that the mechanism of toxin neutralization may involve inhibition of the interaction between Stx2 and the Gb(3) receptor on Vero cells.  相似文献   

19.
Shiga toxins produced by Escherichia coli O157:H7 cause a wide spectrum of enteric diseases, such as lethal hemorrhagic colitis and hemolytic uremic syndrome. In this study, the B subunit protein of Shiga toxin type 1 (Stx1) was produced in the E. coli system, was further purified by Ni-column Affinity Chromatography method, and was then used as an immunogen to immunize laying hens for yolk immunoglobulin (IgY) production. Titers of IgY increased gradually with boosting vaccination and, finally, reached a level of 105, remaining steady over 1 year. Then the protective efficacy of IgY against Stx1 was evaluated by in vitro and in vivo experiments. It was shown that the anti-Stx1 IgY could effectively block the binding of Stx1 to the Hela cells and could protect BALB/c mice from toxin challenges. The data indicates the facility of using egg yolk IgY as a therapeutic intervention in cases of Shiga toxin intoxication.  相似文献   

20.
Infectious diseases due to enterohemorrhagic Escherichia coli (EHEC) are characterized by diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. The adherence of EHEC on intestinal epithelial cells is a first step for developing these diseases. In the present study, we examined whether EHEC O157:H7 adhere to intestinal epithelial cells of mice and cause F-actin accumulation in the epithelial cells following the intragastric inoculation of the pathogen. Fecal shedding of the EHEC O157:H7 strain was observed in ICR mice up to 3 weeks. Fecal shedding periods of the type III secretion system-related gene (espA and sepL) deletion mutants were clearly shorter than that of the wild-type EHEC O157:H7 strain. The EHEC O157:H7 colonies were found on the epithelial surfaces of the ceca in association with F-actin accumulation beneath the attached bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号