首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional specialization of calreticulin domains   总被引:5,自引:0,他引:5       下载免费PDF全文
Calreticulin is a Ca2+-binding chaperone in the endoplasmic reticulum (ER), and calreticulin gene knockout is embryonic lethal. Here, we used calreticulin-deficient mouse embryonic fibroblasts to examine the function of calreticulin as a regulator of Ca2+ homeostasis. In cells without calreticulin, the ER has a lower capacity for Ca2+ storage, although the free ER luminal Ca2+ concentration is unchanged. Calreticulin-deficient cells show inhibited Ca2+ release in response to bradykinin, yet they release Ca2+ upon direct activation with the inositol 1,4,5-trisphosphate (InsP3). These cells fail to produce a measurable level of InsP3 upon stimulation with bradykinin, likely because the binding of bradykinin to its cell surface receptor is impaired. Bradykinin binding and bradykinin-induced Ca2+ release are both restored by expression of full-length calreticulin and the N + P domain of the protein. Expression of the P + C domain of calreticulin does not affect bradykinin-induced Ca2+ release but restores the ER Ca2+ storage capacity. Our results indicate that calreticulin may play a role in folding of the bradykinin receptor, which affects its ability to initiate InsP3-dependent Ca2+ release in calreticulin-deficient cells. We concluded that the C domain of calreticulin plays a role in Ca2+ storage and that the N domain may participate in its chaperone functions.  相似文献   

2.
3.
Calreticulin in cardiac development and pathology   总被引:6,自引:0,他引:6  
Calreticulin is a Ca(2+) binding/storage chaperone resident in the lumen of endoplasmic reticulum (ER). The protein is an important component of the calreticulin/calnexin cycle and the quality control pathways in the ER. In mice, calreticulin deficiency is lethal due to impaired cardiac development. This is not surprising because the protein is expressed at high level at early stages of cardiac development. Overexpression of the protein in developing and postnatal heart leads to bradycardia, complete heart block and sudden death. Recent studies on calreticulin-deficient and transgenic mice revealed that the protein is a key upstream regulator of calcineurin-dependent pathways during cardiac development. Calreticulin and ER may play important role in cardiac development and postnatal pathologies.  相似文献   

4.
Calreticulin (CRT) is one of the major Ca2+ binding chaperone proteins of the endoplasmic reticulum (ER) and an unusual luminal ER protein. Postnatally elevated expression of CRT leads to impaired development of the cardiac conductive system and may be responsible for the pathology of complete heart block. In this study, the molecular mechanisms that affect Ca2+-dependent signal cascades were investigated using CRT-overexpressing cardiomyocytes. In particular, we asked whether calreticulin plays a critical role in the activation of Ca2+-dependent apoptosis. In the cells overexpressing CRT, the intracellular calcium concentration was significantly increased and the activity of PKC and level of SECAR2a mRNA were reduced. Phosphorylation of Akt and ERKs decreased compared to control. In addition the activity of the anti-apoptotic factor, Bcl-2, was decreased and the activities of pro-apoptotic factor, Bax, p53 and caspase 8 were increased, leading to a dramatic augmentation of caspase 3 activity. Our results suggest that enhanced CRT expression in mature cardiomyocytes disrupts intracellular calcium regulation, leading to calcium-dependent apoptosis.  相似文献   

5.
《The Journal of cell biology》1996,135(6):1913-1923
Calreticulin is an ubiquitous and highly conserved high capacity Ca(2+)- binding protein that plays a major role in Ca2+ storage within the lumen of the ER. Here, using L fibroblast cell lines expressing different levels of calreticulin, we show that calreticulin plays a role in the control of cell adhesiveness via regulation of expression of vinculin, a cytoskeletal protein essential for cell-substratum and cell-cell attachments. Both vinculin protein and mRNA levels are increased in cells overexpressing calreticulin and are downregulated in cells expressing reduced level of calreticulin. Abundance of actin, talin, alpha 5 and beta 1 integrins, pp125 focal adhesion kinase, and alpha-catenin is not affected by the differential calreticulin expression. Overexpression of calreticulin increases both cell- substratum and cell-cell adhesiveness of L fibroblasts that, most surprisingly, establish vinculin-rich cell-cell junctions. Upregulation of calreticulin also affects adhesion-dependent phenomena such as cell motility (which decreases) and cell spreading (which increases). Downregulation of calreticulin brings about inverse effects. Cell adhesiveness is Ca2+ regulated. The level of calreticulin expression, however, has no effect on either the resting cytoplasmic Ca2+ concentration or the magnitude of FGF-induced Ca2+ transients. Calreticulin, however, participates in Ca2+ homeostasis as its level of expression affects cell viability at low concentrations of extracellular Ca2+. Consequently, we infer that it is not the Ca2+ storage function of calreticulin that affects cell adhesiveness. Neither endogenous calreticulin nor overexpressed green fluorescent protein-calreticulin construct can be detected outside of the ER. Since all of the adhesion-related effects of differential calreticulin expression can be explained by its regulation of vinculin expression, we conclude that it is the ER-resident calreticulin that affects cellular adhesiveness.  相似文献   

6.
Calreticulin is an endoplasmic reticulum (ER) luminal Ca(2+)-binding chaperone involved in folding of newly synthesized glycoproteins via the "calreticulin-calnexin cycle." We reconstituted ER of calreticulin-deficient cells with N-terminal histidine (His25, His82, His128, and His153) calreticulin mutants and carried out a functional analysis. In crt(-/-) cells bradykinin-dependent Ca2+ release is altered, and the reestablishment of bradykinin-dependent Ca2+ release was used as a marker for calreticulin function. Bradykinin-dependent Ca2+ release from the ER was rescued by wild type calreticulin and by the His25, His82, or His128 mutant but not by the His153 mutant. Wild type calreticulin and the His25, His82, and His128 mutants all prevented in vitro thermal aggregation of malate dehydrogenase and IgY, whereas the His153 mutant did not, indicating that His153 chaperone function was impaired. Biophysical analysis of His153 mutant revealed that conformation changes in calreticulin mutant may be responsible for the loss of its chaperone activity. We conclude that mutation of a single amino acid residue in calreticulin has devastating consequences for its chaperone function, indicating that mutations in chaperones may play a significant role in protein folding disorders.  相似文献   

7.
We studied the phosphorylation (activation status) of c-Src and CaMKII in MEFs either wild type for calreticulin, calreticulin-null, or rescued with full-length calreticulin. We found that calreticulin-null cells were poorly spread on the substratum and formed few, if any, focal contacts. Fibronectin expression and deposition were lower in calreticulin-null MEFs compared to calreticulin-expressing cells, which also exhibited increased c-Src and CaMKII phosphorylation (activity). Plating MEFs on preformed fibronectin rescued the poor adhesive phenotype of calreticulin-null cells, and caused a decrease in c-Src Y418 phosphorylation (activity). c-Src inhibition caused the calreticulin-null MEFs to become well spread on the substratum and to make many prominent focal contacts. Calmodulin and CaMKII inhibition caused similar results, along with a notable increase in paxillin phosphorylation (activation). To test if the calcium storage function of calreticulin was responsible for these effects, we manipulated intracellular [Ca(2+)]. Lowering [Ca(2+)](ER) caused an increase in c-Src phosphorylation and a decrease in fibronectin abundance. Conversely, increasing [Ca(2+)] caused opposite effects. These results suggest that calreticulin regulates both the c-Src and calmodulin/CaMKII pathways, enabling cells to be better spread on the substratum by allowing greater fibronectin deposition and increased focal contact formation.  相似文献   

8.
Differentiation process of mesenchymal stem cells (MSCs) into adipocyte is involved in obesity. Multiple factors such as Ca2+ play important roles in different stages of this process. Because of the complicated roles of Ca2+ in adipogenesis, the aim of present investigation was to study the influx and efflux of Ca2+ into and out of the cells during adipogenesis. Adipose-derived MSCs were used to differentiate into adipocytes. MSCs were exposed to 2.5 mM Ca2+ or 1.8 mM Ca2+ plus calcium ionophore, A23187, for 3 days. Lipid staining, triglycerides (TG) content, and glyceraldehyde phosphate dehydrogenase (GAPDH) activity were evaluated to confirm the efficiency of the differentiation. Gene expression of GLUT4, PPARγ2, RAR-α, and calreticulin, as well as the protein levels of GLUT4 and PPARγ2 were determined. Ca2+ and in particular Ca2+ plus A23187 significantly lowered the efficiency of differentiation accompanied by decrease in intracellular TG deposits, GAPDH activity and alleviation of gene, and protein levels of GLUT4 and PPARγ2. While calreticulin and RAR-α were remarkably upregulated in A23187 group. This study showed the inhibitory effects of calcium in adipogenesis. Additionally, it indicated the greater inhibitory effect of calreticulin and RAR-α in controlling adipogenesis by higher levels of calcium.  相似文献   

9.
Szperl M  Opas M 《Postepy biochemii》2005,51(4):382-386
The endoplasmic reticulum (ER) plays a vital role in many cellular processes, including Ca2+ storage and release. Calreticulin is a Ca2+-binding chaperon residing in ER. The protein is a key component of the quality control pathways in ER. In the ER lumen, calreticulin performs two major functions, works as a chaperon and regulates Ca2+ homeostasis. In cardiac muscle, calreticulin plays an important role in cardiac development and pathology.  相似文献   

10.
Calreticulin is a soluble calcium-binding chaperone of the endoplasmic reticulum (ER) that is also detected on the cell surface and in the cytosol. Calreticulin contains a single high affinity calcium-binding site within a globular domain and multiple low affinity sites within a C-terminal acidic region. We show that the secondary structure of calreticulin is remarkably thermostable at a given calcium concentration. Rather than corresponding to complete unfolding events, heat-induced structural transitions observed for calreticulin relate to tertiary structural changes that expose hydrophobic residues and reduce protein rigidity. The thermostability and the overall secondary structure content of calreticulin are impacted by the divalent cation environment, with the ER range of calcium concentrations enhancing stability, and calcium-depleting or high calcium environments reducing stability. Furthermore, magnesium competes with calcium for binding to calreticulin and reduces thermostability. The acidic domain of calreticulin is an important mediator of calcium-dependent changes in secondary structure content and thermostability. Together, these studies indicate interactions between the globular and acidic domains of calreticulin that are impacted by divalent cations. These interactions influence the structure and stability of calreticulin, and are likely to determine the multiple functional activities of calreticulin in different subcellular environments.  相似文献   

11.
Calreticulin is an endoplasmic reticulum resident Ca(2+)-binding chaperone. The importance of the protein is illustrated by embryonic lethality because of impaired cardiac development in calreticulin-deficient mice. The molecular details underlying this phenotype are not understood. In this study, we show that overexpression of activated calcineurin reverses the defect in cardiac development observed in calreticulin-deficient mice and rescues them from embryonic lethality. The surviving mice show no defect in cardiac development but exhibited growth retardation, hypoglycemia, increased levels of serum triacylglycerols, and cholesterol. Reversal of embryonic lethality because of calreticulin deficiency by activated calcineurin underscores the impact of the calreticulin-calcineurin functions on the Ca(2+)-dependent signaling cascade during early cardiac development. These findings show that calreticulin and calcineurin play fundamental roles in Ca(2+)-dependent pathways essential for normal cardiac development and explain the molecular basis for the rescue of calreticulin-deficient phenotype.  相似文献   

12.
Heart, brain, and body wall defects in mice lacking calreticulin   总被引:13,自引:0,他引:13  
Calreticulin is a ubiquitously expressed protein, which has been implicated in a large number of cellular functions, including calcium storage and signaling, protein folding, and cell attachment. To examine the role of calreticulin during in vivo development, mice deficient in calreticulin were generated by targeted inactivation of the calreticulin gene. Calreticulin-deficient mutants die in utero, mostly in late gestation. Half of these embryos had decreased cardiac cell mass, associated with increased apoptosis of cardiac myocytes. In vitro differentiation cultures of calreticulin-deficient embryonic stem cells resulted in fewer embryoid bodies with contractile activity than cultures derived from calreticulin +/- stem cells (P < 0.001). Sixteen percent of the mutants exhibited exencephaly secondary to a defect in neural tube closure. Embryos surviving until Embryonic Day 16.5 had omphalocele. Lack of calreticulin did not influence survival of embryonic fibroblasts under various endoplasmic reticulum stress conditions. However, calreticulin did influence cell migration in a calcium- and substrate-dependent manner. We conclude that calreticulin is not essential during the early stages of embryonic development, but is important for the development of heart and brain and for ventral body wall closure. The observed abnormalities are compatible with a role of calreticulin in the modulation of cellular calcium signaling.  相似文献   

13.
Calreticulin is a lectin chaperone essential for intracellular calcium homeostasis. Deletion of calreticulin gene compromises the overall quality control within the endoplasmic reticulum (ER) leading to activation of the unfolded protein response. However, the ER structure of calreticulin deficient cells (crt-/-) is not altered due to accumulation of misfolded proteins. Therefore, the aim of this study was to determine whether the ubiquitin-proteasome pathway is activated in crt-/- cells as a compensatory mechanism for cell survival. Here we show a significant increase in the expression of genes involved in ER associated degradation and activation of the ubiquitin-proteasome system in crt-/- cells. We also demonstrated that the ubiquitination of two proteins processed in ER, connexin 43 and A1AT NHK (alpha1-antitrypsin mutant) are increased in crt-/- cells. Furthermore, we showed that the increased proteasome activity in the crt-/- cells could be rescued upon re-introduction of calreticulin or calsequestrin (a muscle calcium binding protein). We also illustrated that increased cytosolic Ca2+ enhances the proteasome activity. Interestingly, suppression of calnexin function using siRNA further elevated the proteasome activity in crt-/- cells. This is the first report to show that loss of calreticulin function enhances the ubiquitin-proteasome activity which could function as a compensatory mechanism for cell survival.  相似文献   

14.
Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation.  相似文献   

15.
Ca2+ regulation of interactions between endoplasmic reticulum chaperones   总被引:4,自引:0,他引:4  
Casade Blue (CB), a fluorescent dye, was used to investigate the dynamics of interactions between endoplasmic reticulum (ER) lumenal chaperones including calreticulin, protein disulfide isomerase (PDI), and ERp57. PDI and ERp57 were labeled with CB, and subsequently, we show that the fluorescence intensity of the CB-conjugated proteins changes upon exposure to microenvironments of a different polarity. CD analysis of the purified proteins revealed that changes in the fluorescence intensity of CB-ERp57 and CB-PDI correspond to conformational changes in the proteins. Using this technique we demonstrate that PDI interacts with calreticulin at low Ca2+ concentration (below 100 microM), whereas the protein complex dissociates at >400 microM Ca2+. These are the Ca2+ concentrations reminiscent of Ca2+ levels found in empty or full ER Ca2+ stores. The N-domain of calreticulin interacts with PDI, but Ca2+ binding to the C-domain of the protein is responsible for Ca2+ sensitivity of the interaction. ERp57 also interacts with calreticulin through the N-domain of the protein. Initial interaction between these proteins is Ca2+-independent, but it is modulated by Ca2+ binding to the C-domain of calreticulin. We conclude that changes in ER lumenal Ca2+ concentration may be responsible for the regulation of protein-protein interactions. Calreticulin may play a role of Ca2+ "sensor" for ER chaperones via regulation of Ca2+-dependent formation and maintenance of structural and functional complexes between different proteins involved in a variety of steps during protein synthesis, folding, and post-translational modification.  相似文献   

16.
Perforin lytic activity is controlled by calreticulin   总被引:4,自引:0,他引:4  
The components within cytotoxic lymphocyte granules are responsible for a significant fraction of T and NK cell-mediated death. Perforin is stored in these granules together with calreticulin. Calreticulin has long been recognized as a chaperone protein of the endoplasmic reticulum (ER) and is the only resident ER protein to be found in the cytotoxic granules. Here we implicate a role for calreticulin in killing and report that it controls osmotic lysis mediated by purified perforin. Calreticulin, at a concentration of 2.2 x 10-7 M, completely blocked perforin-mediated lysis. Inhibition was stable and held over 5 h. Recombinant calreticulin, at a concentration of 8. 8 x 10-7 M, also blocked lysis, indicating the inhibition was due to calreticulin and not a copurifying protein in the native calreticulin preparations. Using calreticulin domain fragments (expressed as GST fusion proteins), we found inhibitory activity in the high-capacity calcium-binding C-domain, which does not bind perforin. The N- or P-domains, which can bind perforin, were unable to block lysis. The inhibition of lysis was independent of granzyme inactivation or the ability of calreticulin to sequester calcium. Our data indicate that calreticulin regulation of perforin-mediated lysis probably occurs without direct interaction with perforin. We propose a novel model in which calreticulin stabilizes membranes to prevent polyperforin pore formation.  相似文献   

17.
Calreticulin is a Ca(2+)-binding molecular chaperone of the lumen of the endoplasmic reticulum. Calreticulin has been shown to be essential for cardiac and neural development in mice, but the mechanism by which it functions in cell differentiation is not fully understood. To examine the role of calreticulin in cardiac differentiation, the calreticulin gene was introduced into rat cardiomyoblast H9c2 cells, and the effect of calreticulin overexpression on cardiac differentiation was examined. Upon culture in a differentiation medium containing fetal calf serum (1%) and retinoic acid (10 nm), cells transfected with the calreticulin gene were highly susceptible to apoptosis compared with controls. In the gene-transfected cells, protein kinase B/Akt signaling was significantly suppressed during differentiation. Furthermore, protein phosphatase 2A, a Ser/Thr protein phosphatase, was significantly up-regulated, implying suppression of Akt signaling due to dephosphorylation of Akt by the up-regulated protein phosphatase 2A via regulation of Ca(2+) homeostasis. Thus, overexpression of calreticulin promotes differentiation-dependent apoptosis in H9c2 cells by suppressing the Akt signaling pathway. These findings indicate a novel mechanism by which cytoplasmic Akt signaling is modulated to cause apoptosis by a resident protein of the endoplasmic reticulum, calreticulin.  相似文献   

18.
Calreticulin (CRT) and calnexin (CLNX) are lectin chaperones that participate in protein folding in the endoplasmic reticulum (ER). CRT is a soluble ER lumenal protein, whereas CLNX is a transmembrane protein with a cytosolic domain that contains two consensus motifs for protein kinase (PK) C/proline- directed kinase (PDK) phosphorylation. Using confocal Ca(2+) imaging in Xenopus oocytes, we report here that coexpression of CLNX with sarco endoplasmic reticulum calcium ATPase (SERCA) 2b results in inhibition of intracellular Ca(2+) oscillations, suggesting a functional inhibition of the pump. By site-directed mutagenesis, we demonstrate that this interaction is regulated by a COOH-terminal serine residue (S562) in CLNX. Furthermore, inositol 1,4,5-trisphosphate- mediated Ca(2+) release results in a dephosphorylation of this residue. We also demonstrate by coimmunoprecipitation that CLNX physically interacts with the COOH terminus of SERCA2b and that after dephosphorylation treatment, this interaction is significantly reduced. Together, our results suggest that CRT is uniquely regulated by ER lumenal conditions, whereas CLNX is, in addition, regulated by the phosphorylation status of its cytosolic domain. The S562 residue in CLNX acts as a molecular switch that regulates the interaction of the chaperone with SERCA2b, thereby affecting Ca(2+) signaling and controlling Ca(2+)-sensitive chaperone functions in the ER.  相似文献   

19.
Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor.  相似文献   

20.
We have studied the possible mechanisms of endoplasmic reticulum (ER) export and retention by using natural residents of the plant ER. Under normal physiological conditions, calreticulin and the lumenal binding protein (BiP) are efficiently retained in the ER. When the ER retention signal is removed, truncated calreticulin is much more rapidly secreted than truncated BiP. Calreticulin carries two glycans of the typical ER high-mannose form. Both glycans are competent for Golgi-based modifications, as determined from treatment with brefeldin A or based on the deletion of the ER retention motif. In contrast to BiP, calreticulin accumulation is strongly dependent on its retention signal, thereby allowing us to test whether saturation of the retention mechanism is possible. Overexpression of calreticulin led to 100-fold higher levels in dilated globular ER cisternae as well as dilated nuclear envelopes and partial secretion of both BiP and calreticulin. This result shows that both molecules are competent for ER export and supports the concept that proteins are secreted by default. This result also supports previous data suggesting that truncated BiP devoid of its retention motif can be retained in the ER by association with calreticulin. Moreover, even under these saturating conditions, cellular calreticulin did not carry significant amounts of complex glycans, in contrast to secreted calreticulin. This result shows that calreticulin is rapidly secreted once complex glycans have been synthesized in the medial/trans Golgi apparatus and that the modified protein does not appear to recycle back to the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号