首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in vascular endothelial (VE)-cadherin-mediated cell-cell adhesion and integrin-mediated cell-matrix adhesion coordinate to affect the physical and mechanical rearrangements of the endothelium, although the mechanisms for such cross talk remain undefined. Herein, we describe the regulation of focal adhesion formation and cytoskeletal tension by intercellular VE-cadherin engagement, and the molecular mechanism by which this occurs. Increasing the density of endothelial cells to increase cell-cell contact decreased focal adhesions by decreasing cell spreading. This contact inhibition of cell spreading was blocked by disrupting VE-cadherin engagement with an adenovirus encoding dominant negative VE-cadherin. When changes in cell spreading were prevented by culturing cells on a micropatterned substrate, VE-cadherin-mediated cell-cell contact paradoxically increased focal adhesion formation. We show that VE-cadherin engagement mediates each of these effects by inducing both a transient and sustained activation of RhoA. Both the increase and decrease in cell-matrix adhesion were blocked by disrupting intracellular tension and signaling through the Rho-ROCK pathway. In all, these findings demonstrate that VE-cadherin signals through RhoA and the actin cytoskeleton to cross talk with cell-matrix adhesion and thereby define a novel pathway by which cell-cell contact alters the global mechanical and functional state of cells.  相似文献   

2.
Oxidants, generated by activated neutrophils, have been implicated in the pathophysiology of vascular disorders and lung injury; however, mechanisms of oxidant-mediated endothelial barrier dysfunction are unclear. Here, we have investigated the role of focal adhesion kinase (FAK) in regulating hydrogen peroxide (H(2)O(2))-mediated tyrosine phosphorylation of intercellular adhesion proteins and barrier function in endothelium. Treatment of bovine pulmonary artery endothelial cells (BPAECs) with H(2)O(2) increased tyrosine phosphorylation of FAK, paxillin, beta-catenin, and vascular endothelial (VE)-cadherin and decreased transendothelial electrical resistance (TER), an index of cell-cell adhesion and/or cell-matrix adhesion. To study the role of FAK in H(2)O(2)-induced TER changes, BPAECs were transfected with vector or FAK wild-type or FAK-related non-kinase (FRNK) plasmids. Overexpression of FRNK reduced FAK expression and attenuated H(2)O(2)-mediated tyrosine phosphorylation of FAK, paxillin, beta-catenin, and VE-cadherin and cell-cell adhesion. Additionally, FRNK prevented H(2)O(2)-induced distribution of FAK, paxillin, beta-catenin, or VE-cadherin toward focal adhesions and cell-cell adhesions but not actin stress fiber formation. These results suggest that activation of FAK by H(2)O(2) is an important event in oxidant-mediated VE barrier function regulated by cell-cell and cell-matrix contacts.  相似文献   

3.
To remodel endothelial cell-cell adhesion, inflammatory cytokine- and angiogenic growth factor-induced signals impinge on the vascular endothelial cadherin (VE-cadherin) complex, the central component of endothelial adherens junctions. This study demonstrates that junction remodeling takes place at a molecularly and phenotypically distinct subset of VE-cadherin adhesions, defined here as focal adherens junctions (FAJs). FAJs are attached to radial F-actin bundles and marked by the mechanosensory protein Vinculin. We show that endothelial hormones vascular endothelial growth factor, tumor necrosis factor α, and most prominently thrombin induced the transformation of stable junctions into FAJs. The actin cytoskeleton generated pulling forces specifically on FAJs, and inhibition of Rho-Rock-actomyosin contractility prevented the formation of FAJs and junction remodeling. FAJs formed normally in cells expressing a Vinculin binding-deficient mutant of α-catenin, showing that Vinculin recruitment is not required for adherens junction formation. Comparing Vinculin-devoid FAJs to wild-type FAJs revealed that Vinculin protects VE-cadherin junctions from opening during their force-dependent remodeling. These findings implicate Vinculin-dependent cadherin mechanosensing in endothelial processes such as leukocyte extravasation and angiogenesis.  相似文献   

4.
Confluent endothelial cells respond poorly to the proliferative signals of VEGF. Comparing isogenic endothelial cells differing for vascular endothelial cadherin (VE-cadherin) expression only, we found that the presence of this protein attenuates VEGF-induced VEGF receptor (VEGFR) 2 phosphorylation in tyrosine, p44/p42 MAP kinase phosphorylation, and cell proliferation. VE-cadherin truncated in beta-catenin but not p120 binding domain is unable to associate with VEGFR-2 and to induce its inactivation. beta-Catenin-null endothelial cells are not contact inhibited by VE-cadherin and are still responsive to VEGF, indicating that this protein is required to restrain growth factor signaling. A dominant-negative mutant of high cell density-enhanced PTP 1 (DEP-1)//CD148 as well as reduction of its expression by RNA interference partially restore VEGFR-2 phosphorylation and MAP kinase activation. Overall the data indicate that VE-cadherin-beta-catenin complex participates in contact inhibition of VEGF signaling. Upon stimulation with VEGF, VEGFR-2 associates with the complex and concentrates at cell-cell contacts, where it may be inactivated by junctional phosphatases such as DEP-1. In sparse cells or in VE-cadherin-null cells, this phenomenon cannot occur and the receptor is fully activated by the growth factor.  相似文献   

5.
Beta-catenin plays an important role in the regulation of vascular endothelial cell-cell adhesions and barrier function by linking the VE-cadherin junction complex to the cytoskeleton. The purpose of this study was to evaluate the effect of beta-catenin and VE-cadherin interactions on endothelial permeability during inflammatory stimulation by histamine. We first assessed the ability of a beta-catenin binding polypeptide known as inhibitor of beta-catenin and T cell factor (ICAT) to compete beta-catenin binding to VE-cadherin in vitro. We then overexpressed recombinant FLAG-ICAT in human umbilical vein endothelial cells (HUVECs) to study its impact on endothelial barrier function controlled by cell-cell adhesions. The binding of beta-catenin to VE-cadherin was quantified before and after stimulation with histamine along with measurements of transendothelial electrical resistance (TER) and apparent permeability to albumin (P(a)) under the same conditions. The results showed that ICAT bound to beta-catenin and competitively inhibited binding of the VE-cadherin cytoplasmic domain to beta-catenin in a concentration-dependent manner. Overexpression of FLAG-ICAT in endothelial cell monolayers did not affect their basal permeability properties, as indicated by unaltered TER and P(a); however, the magnitude and duration of histamine-induced decreases in TER were significantly augmented. Likewise, the increase in P(a) in the presence of histamine was exacerbated. Overexpression of FLAG-ICAT also significantly decreased the level of beta-catenin-associated VE-cadherin following histamine stimulation. Taken together, these data suggest that inflammatory agents like histamine cause a transient and reversible disruption of binding between beta-catenin and VE-cadherin, during which endothelial permeability is elevated.  相似文献   

6.
Endothelial cadherins and tumor angiogenesis   总被引:7,自引:0,他引:7  
  相似文献   

7.
VEGF-induced vascular permeability is mediated by FAK   总被引:1,自引:0,他引:1  
Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics.  相似文献   

8.
Rap1 is a small GTPase that regulates adherens junction maturation. It remains elusive how Rap1 is activated upon cell-cell contact. We demonstrate for the first time that Rap1 is activated upon homophilic engagement of vascular endothelial cadherin (VE-cadherin) at the cell-cell contacts in living cells and that MAGI-1 is required for VE-cadherin-dependent Rap1 activation. We found that MAGI-1 localized to cell-cell contacts presumably by associating with beta-catenin and that MAGI-1 bound to a guanine nucleotide exchange factor for Rap1, PDZ-GEF1. Depletion of MAGI-1 suppressed the cell-cell contact-induced Rap1 activation and the VE-cadherin-mediated cell-cell adhesion after Ca2+ switch. In addition, relocation of vinculin from cell-extracellular matrix contacts to cell-cell contacts after the Ca2+ switch was inhibited in MAGI-1-depleted cells. Furthermore, inactivation of Rap1 by overexpression of Rap1GAPII impaired the VE-cadherin-dependent cell adhesion. Collectively, MAGI-1 is important for VE-cadherin-dependent Rap1 activation upon cell-cell contact. In addition, once activated, Rap1 upon cell-cell contacts positively regulate the adherens junction formation by relocating vinculin that supports VE-cadherin-based cell adhesion.  相似文献   

9.
The endothelial barrier controls the passage of fluids, nutrients and cells through the vascular wall. This physiological function is closely related to developmental and adult angiogenesis, blood pressure control, as well as immune responses. Moreover, cancer progression is frequently characterized by disorganized and leaky blood vessels. In this context, vascular permeability drives tumour-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration and tumour cell extravasation. Although various molecules have been implicated, the vascular endothelial adhesion molecule, VE-cadherin (vascular endothelial cadherin), has emerged as a critical player involved in maintaining endothelial barrier integrity and homoeostasis. Indeed, VE-cadherin coordinates the endothelial cell-cell junctions through its adhesive and signalling properties. Of note, many angiogenic and inflammatory mediators released into the tumour microenvironment influence VE-cadherin behaviour. Therefore restoring VE-cadherin function could be one very promising target for vascular normalization in cancer therapies. In this review, we will mainly focus on recent discoveries concerning the molecular mechanisms involved in modulating VE-cadherin plasticity in cancer.  相似文献   

10.
The adherens junctional molecule, vascular endothelial cadherin (VE-cadherin), functions to maintain adherens junction stability and to suppress apoptosis of endothelial cells by forming a complex with vascular endothelial growth factor (VEGF) receptor 2 and members of the armadillo family of cytoplasmic proteins. In order to investigate the dynamics of the association of VE-cadherin with adherens junctions during the initial stages of angiogenesis, human umbilical cord endothelial cells (HUVECs) were stimulated with VEGF to undergo angiogenesis in type-I collagen three-dimensional culture. In confluent monolayers of HUVECs, VE-cadherin and its signaling partner, beta-catenin, as well as the paracellular transmembrane adhesion molecule platelet-endothelial cell adhesion molecule (PECAM-1), were all present in regions of cell-cell contact. Within 3 h of stimulation of angiogenesis, VE-cadherin and beta-catenin were lost from these regions. In contrast, the distribution pattern of PECAM-1 did not alter. After 6 h the majority of endothelial cells had migrated to form a network of capillary cords with cell-cell contacts that contained all three molecules. By metabolic labeling of HUVECs it was found that de novo synthesis of VE-cadherin was not essential for the formation of new adherens junctions. Coimmunoprecipitation and immunoblotting experiments showed that the VE-cadherin and beta-catenin remained associated after they were lost from adherens junctions. Detergent extraction of cells with Triton X-100 indicted that the majority of VE-cadherin and beta-catenin was Triton soluble, indicating that they are only weakly associated with the actin-based cytoskeleton.  相似文献   

11.
The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.  相似文献   

12.
Vascular endothelial-cadherin (VE-cadherin) controls endothelial cell-cell adhesion and preserves endothelial integrity. In order to maintain endothelial barrier function, VE-cadherin function is tightly regulated through mechanisms that involve protein phosphorylation and cytoskeletal dynamics. Here, we show that loss of VE-cadherin function results in intercellular gap formation and a drop in electrical resistance of monolayers of primary human endothelial cells. Detailed analysis revealed that loss of endothelial cell-cell adhesion, induced by VE-cadherin-blocking antibodies, is preceded by and dependent on a rapid activation of Rac1 and increased production of reactive oxygen species. Moreover, VE-cadherin-associated beta-catenin is tyrosine-phosphorylated upon loss of cell-cell contact. Finally, the redox-sensitive proline-rich tyrosine kinase 2 (Pyk2) is activated and recruited to cell-cell junctions following the loss of VE-cadherin homotypic adhesion. Conversely, the inhibition of Pyk2 activity in endothelial cells by the expression of CRNK (CADTK/CAKbeta-related non-kinase), an N-terminal deletion mutant that acts in a dominant negative fashion, not only abolishes the increase in beta-catenin tyrosine phosphorylation but also prevents the loss of endothelial cell-cell contact. These results implicate Pyk2 in the reduced cell-cell adhesion induced by the Rac-mediated production of ROS through the tyrosine phosphorylation of beta-catenin. This signaling is initiated upon loss of VE-cadherin function and is important for our insight in the modulation of endothelial integrity.  相似文献   

13.
Vascular endothelial growth factor (VEGF) is a potent mediator of angiogenesis and vascular permeability, in which c-Src tyrosine kinase plays an essential role. However, the mechanisms by which VEGF stimulates c-Src activation have remained unclear. Here, we demonstrate that vascular endothelial cadherin (VE-cadherin) plays a critical role in regulating c-Src activation in response to VEGF. In vascular endothelial cells, VE-cadherin was basally associated with c-Src and Csk (C-terminal Src kinase), a negative regulator of Src activation. VEGF stimulated Csk release from VE-cadherin by recruiting the protein tyrosine phosphatase SHP2 to VE-cadherin signaling complex, leading to an increase in c-Src activation. Silencing VE-cadherin with small interference RNA significantly reduced VEGF-stimulated c-Src activation. Disrupting the association of VE-cadherin and Csk through the reconstitution of Csk binding-defective mutant of VE-cadherin also diminished Src activation. Moreover, inhibiting SHP2 by small interference RNA and adenovirus-mediated expression of a catalytically inactive mutant of SHP2 attenuated c-Src activation by blocking the disassociation of Csk from VE-cadherin. Furthermore, VE-cadherin and SHP2 differentially regulates VEGF downstream signaling. The inhibition of c-Src, VE-cadherin, and SHP2 diminished VEGF-mediated activation of Akt and endothelial nitric-oxide synthase. In contrast, inhibiting VE-cadherin and SHP2 enhanced ERK1/2 activation in response to VEGF. These findings reveal a novel role for VE-cadherin in modulating c-Src activation in VEGF signaling, thus providing new insights into the importance of VE-cadherin in VEGF signaling and vascular function.  相似文献   

14.
Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) cooperate in migration and survival of endothelial cells by activation of phosphatidylinositol-3 (PI-3) kinase and mitogen activating protein (MAP) kinase pathways. However, Ang1 opposes the effect of VEGF on vascular permeability. We found that Ang1 also blocks VEGF-mediated diffusion of fluoresin isothiocyanate (FITC)-labeled albumin across an endothelial cell monolayer. VEGF-mediated vascular permeability has been attributed, in part, to activation of phospholipase A(2) and subsequent formation of platelet activating factor. However, Ang1 had no effect on VEGF-induced activation of phospholipase A(2) or the release of arachidonic acid. VEGF-mediated permeability was associated with disruption of endothelial cell junctional complexes, dissociation of beta-catenin from VE-cadherin, and accumulation of beta-catenin in the cytosol. In contrast, Ang1 enhanced the interaction of beta-catenin with VE-cadherin and impaired VEGF-mediated dissociation of this complex. Ang1 also blocked VEGF-induced translocation of protein kinase C (PKC) and beta2 to the membrane, but had no effect on activation of PKC alpha. In addition, staurosporine and a PKC beta inhibitor, LY379196, blocked VEGF-mediated dissociation of beta-catenin from VE-cadherin, diffusion of albumin across the endothelial cell monolayer, and translocation of PKC beta isoforms. These data indicate that VEGF-mediated disruption of endothelial cell-cell interactions requires activation of PKC beta isoforms and that this pathway is blocked by Ang1.  相似文献   

15.
Julie Gavard 《FEBS letters》2009,583(1):1-592
Exchanges between the blood compartment and the surrounding tissues require a tight regulation by the endothelial barrier. Recent reports inferred that VE-cadherin, an endothelial specific cell-cell adhesion molecule, plays a pivotal role in the formation, maturation and remodeling of the vascular wall. Indeed, a growing number of permeability inducing factors (PIFs) was shown to elicit signaling mechanisms culminating in VE-cadherin destabilization and global alteration of the junctional architecture. Conversely, anti-PIFs protect from VE-cadherin disruption and enhance cell cohesion. These findings provide evidence on how endothelial cell-cell junctions impact the vascular network, and change our perception about normal and aberrant angiogenesis.  相似文献   

16.
Hemodynamic shear stress is a fundamental determinant of vascular remodeling and atherogenesis. Changes in focal adhesions, cytoskeletal organization and gene expression are major responses of endothelial cells to shear stress. Here, we show that activation of the small GTPase Rac is essential for gene expression and for providing spatial information for shear stress-induced cell alignment. Fluorescence resonance energy transfer (FRET) localizes activated Rac1 in the direction of flow. This directional Rac1 activation is downstream of shear-induced new integrin binding to extracellular matrix. Additionally, Rac1 mediates flow-induced stimulation of nuclear factor kappaB (NF-kappaB) and the subsequent expression of intercellular cell adhesion molecule 1 (ICAM-1), an adhesion receptor involved in the recruitment of leukocytes to atherosclerotic plaque. These studies provide a unifying model linking three of the main responses to shear stress that mediate both normal adaptation to hemodynamic forces and inflammatory dysfunction of endothelial cells in atherosclerosis.  相似文献   

17.
Vascular endothelial cadherin (VE-cadherin), which belongs to the classical cadherin family, is localized at adherens junctions exclusively in vascular endothelial cells. Biochemical and biomechanical cues regulate the VE-cadherin adhesive potential by triggering the intracellular signals. VE-cadherin-mediated cell adhesion is required for cell survival and endothelial cell deadhesion is required for vascular development. It is therefore crucial to understand how VE-cadherin-based cell adhesion is controlled. This review summarizes the inter-endothelial cell adhesions and introduces our recent advance in Rap1-regulated VE-cadherin adhesion. A further analysis of the VE-cadherin recycling system will aid the understanding of cell adhesion/deadhesion mechanisms mediated by VE-cadherin in response to extracellular stimuli during development and angiogenesis.  相似文献   

18.
To establish the role of vascular endothelial (VE)-cadherin in the regulation of endothelial cell functions, we investigated the effect of phosphorylation of a VE-cadherin site sought to be involved in p120-catenin binding on vascular permeability and endothelial cell migration. To this end, we introduced either wild-type VE-cadherin or Y658 phosphomimetic (Y658E) or dephosphomimetic (Y658F) VE-cadherin mutant constructs into an endothelial cell line (rat fat pad endothelial cells) lacking endogenous VE-cadherin. Remarkably, neither wild-type- nor Y658E VE-cadherin was retained at cell-cell contacts because of p120-catenin preferential binding to N-cadherin, resulting in the targeting of N-cadherin to cell-cell junctions and the exclusion of VE-cadherin. However, Y658F VE-cadherin was able to bind p120-catenin and to localize at adherence junctions displacing N-cadherin. This resulted in an enhanced barrier function and a complete abrogation of Rac1 activation and lamellipodia formation, thereby inhibiting cell migration. These findings demonstrate that VE-cadherin, through the regulation of Y658 phosphorylation, competes for junctional localization with N-cadherin and controls vascular permeability and endothelial cell migration.  相似文献   

19.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) is expressed on the surface of endothelial cells (EC) and leukocytes. PECAM-1 plays an important role in endothelial-leukocyte and endothelial-endothelial cell-cell interactions. The anti-PECAM-1 antibody-mediated blockade of these interactions inhibits transendothelial migration (TEM) of leukocytes and angiogenesis. PECAM-1 may accommodate these processes through the regulation of cell adhesive and migratory mechanisms. How PECAM-1 regulates these dynamic processes remain unknown. Here we show that PECAM-1 transduces outside-in signals, which activate MAPK/ERKs and small GTPases. This occurs through PECAM-1-mediated formation of intracellular-signaling complexes, Shc/Grb2/SOS1 and/or Crkl/C3G, which is initiated by PECAM-1 engagement on the surface of leukocytes and/or EC. Src, SHP2, and alternative PECAM-1 pre-mRNA splicing play a regulatory role in these signaling events. Our findings reveal that PECAM-1 engagement on the cell surface can transduce "outside-in" signals and activate MAPK/ERKs and small GTPases, impacting both cadherin-mediated cell-cell and integrin-mediated cell-matrix interactions. Thus, we propose PECAM-1 is an important mediator of vascular barrier and regulator of leukocyte and EC adhesion and migration.  相似文献   

20.
Rho family GTPases regulate VEGF-stimulated endothelial cell motility   总被引:10,自引:0,他引:10  
Migration of endothelial cells induced by vascular endothelial growth factor (VEGF) is a critical step in angiogenesis. Stimulation of motility by growth factors such as VEGF requires interaction with the signal transduction pathways activated by the extracellular matrix (ECM). Here we demonstrate that the Rac GTPase is the critical intersection activated by type 1 collagen ECM and VEGF during stimulation of endothelial cell motility. To analyze the role of the Rho family GTPases in VEGF-stimulated endothelial cell chemotaxis and ECM-stimulated haptotaxis, we transduced the respective fusion proteins in human foreskin dermal endothelial cells using a Tat peptide from the human immunodeficiency virus Tat protein. VEGF signaling required Rac activation during chemotaxis, and Rac and Cdc42 were activated during haptotaxis on type I collagen. Similar to VEGF, Rac activation induced an increase in endothelial cell stress fiber and focal adhesion. Surprisingly, Rho activation was not present in collagen-induced haptotaxis or stimulation of chemotaxis by VEGF, although Rho induced stress fibers and focal adhesions similar to Rac activation. The result of constitutive Rho activation was an inhibition of haptotaxis. Thus, Rac is required and sufficient for the activation of endothelial cell haptotaxis and VEGF-stimulated chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号