首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Steady-state spectra of cytochrome oxidase in phospholipid vesicles were obtained by using hexaammineruthenium(II) and ascorbate as reductants. Cytochrome a was up to 80% reduced in the steady state in coupled vesicles. Upon addition of nigericin or acetate, which decrease delta pH, resulting in an increase in delta psi, cytochrome a became more oxidized in the steady state with no change in the rate of respiration. On the other hand, uncouplers or valinomycin plus nigericin, which lower both delta psi and delta pH, stimulated respiration 2-8-fold and also lowered the steady-state level of reduction of cytochrome a. These experiments indicate that electron transfer between cytochromes a and a 3 is sensitive primarily to the pH gradient. Studies with the reconstituted and the soluble enzyme at various pH values indicated that the pH on the matrix side of the membrane, rather than delta pH, controlled the steady-state level of reduced cytochrome a. Hexaammineruthenium(II) substituted for cytochrome c in measurements of proton pumping by cytochrome oxidase. Dicyclohexylcarbodiimide, which eliminated proton pumping by cytochrome oxidase, decreased the effect of ionophores on the steady-state level of reduced cytochrome a.  相似文献   

2.
The control of cytochrome c oxidase incorporated into proteoliposomes has been investigated as a function of membrane potential (delta psi) and pH gradient (delta pH). The oxidase generates a pH gradient (alkaline inside) and a membrane potential (negative inside) when respiring on external cytochrome c. Low levels of valinomycin collapse delta psi and increase delta pH; the respiration rate decreases. High levels of valinomycin, however, decrease delta pH as valinomycin can also act as a protonophore. Nigericin (in the absence of valinomycin) increases delta psi and collapses delta pH; the respiration rate increases. On a millivolt equivalent basis delta pH is a more effective inhibitor of activity than is delta psi. In the absence of any ionophores the cytochrome oxidase proteoliposomes enter a steady state, in which there are both delta pH and delta psi components of control. Present and previous data suggest that the respiration rate responds in a linear way ("ohmically") to increasing delta pH but in a nonlinear way to delta psi ("non-ohmically"). High levels of both delta psi and delta pH do not completely inhibit turnover (maximal respiratory control values lie between 6 and 10). The controlled steady state involves the electrophoretic entry and electroneutral exit of K+ from the vesicles. A model is presented in which the enzyme responds to both delta pH and delta psi components of the proton-motive force, but is more sensitive to delta pH than to delta psi at an equivalent delta mu H+. The steady state of the proteoliposome system can be represented for any set of permeabilities and enzyme activity levels using the computer simulation programme Stella.  相似文献   

3.
Isolated membrane vesicles from the obligately acidophilic bacterium Bacillus acidocaldarius generated an electrochemical gradient of protons (delta mu- H+) upon energization with ascorbate-phenazine methosulfate at pH 6.0 or 3.0. At pH 6.0, there was little or no transmembrane pH gradient (delta pH), but a transmembrane electrical potential (delta psi) of ca. -77 mV, positive out, was observed. At pH 3.0, a delta pH equivalent to - 100 mV, acid out, and a delta psi of -73 mV, positive out, were observed upon energization. The total magnitude of the delta mu- H+ was higher than that of whole cells at acid pH, but the very large delta pHs and the reversed delta psi s, i.e., inside positive, that are typical of acidophile cells were not observed in the vesicles. The vesicles exhibited energy-dependent accumulation of alpha-aminoisobutyric acid that was inhibited by both nigericin and valinomycin (plus K+) at pH 3.0 but was inhibited little by nigericin at pH 6.0.  相似文献   

4.
Synaptic vesicles contain a H+-ATPase that generates a proton electrochemical gradient (delta mu H+) required for the uptake of neurotransmitters into the organelles. In this study, the synaptic vesicle H+-ATPase was examined for structural and functional similarities with other identified ATPases that generate a delta mu H+ across membranes. The synaptic vesicle H+-ATPase displayed immunological similarity with the 115-, 72-, and 39-kDa subunits of a vacuolar-type H+-ATPase purified from chromaffin granules. Functionally, the ATP-dependent H+ pumping across synaptic vesicles and ATP hydrolysis were sensitive to the sulfhydryl-modifying reagents, N-ethylmaleimide and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole, at concentrations known to affect vacuolar-type H+-ATPases. In addition, as with vacuolar-type H+-ATPases, the presence of NO3-, SO4(2-), or F- inhibited the generation of a delta mu H+, but addition of vanadate or oligomycin had no effect. The delta mu H+ is a function of the pH gradient (delta pH) and membrane potential (delta psi sv) across the synaptic vesicle. Acidification (delta pH) of the synaptic vesicle interior was enhanced in the presence of permeant anions, such as Cl-, or the K+ ionophore, valinomycin. In the absence of permeant anions, the H+-ATPase generated a delta psi sv that effected the transport of L-glutamate into the synaptic vesicles. Dissipation of delta psi sv by incubation with increased external Cl- or nigericin resulted in the abolition of glutamate uptake, despite the continued maintenance of a delta mu H+ across the synaptic vesicle as a substantial delta pH. The results suggest that the synaptic vesicle H+-ATPase is of a vacuolar type and energizes the uptake of anionic glutamate by virtue of the delta psi sv component of the delta mu H+ it generates.  相似文献   

5.
The lactose carrier, a galactoside:H+ symporter in Escherichia coli, has been purified from cytoplasmic membranes by pre-extraction of the membranes with 5-sulfosalicylate, solubilization in dodecyl-O-beta-D-maltoside, Ecteola-column chromatography, and removal of residual impurities by anti-impurity antibodies. Subsequently, the purified carrier was reincorporated into E. coli phospholipid vesicles. Purification was monitored by tracer N-[3H]ethylmaleimide-labeled carrier and by binding of the substrate p-nitrophenyl-alpha-D-galactopyranoside. All purified carrier molecules were active in substrate binding and the purified protein was at least 95% pure by several criteria. Substrate binding to the purified carrier in detergent micelles and in reconstituted proteoliposomes yielded a stoichiometry close to one molecule substrate bound per polypeptide chain. Large unilamellar proteoliposomes (1-5-micron diameter) were prepared from initially small reconstituted vesicles by freeze-thaw cycles and low-speed centrifugation. These proteoliposomes catalyzed facilitated diffusion and active transport in response to artificially imposed electrochemical proton gradients (delta mu H+) or one of its components (delta psi or delta pH). Comparison of the steady-state level of galactoside accumulation and the nominal value of the driving gradients yielded cotransport stoichiometries up to 0.7 proton/galactoside, suggesting that the carrier protein is the only component required for active galactoside transport. The half-saturation constants for active uptake of lactose (KT = 200 microM) or beta-D-galactosyl-1-thio-beta-D-galactoside (KT = 50-80 microM) by the purified carrier were found to be similar to be similar to those measured in cells or cytoplasmic membrane vesicles. The maximum rate for active transport expressed as a turnover number was similar in proteoliposomes and cytoplasmic membrane vesicles (kcat = 3-4 s-1 for lactose) but considerably smaller than in cells (kcat = 40-60 s-1). Possible reasons for this discrepancy are discussed.  相似文献   

6.
The kinetics of Na+ efflux from Escherichia coli RA 11 membrane vesicles taking place along a favorable Na+ concentration gradient are strongly dependent on the generation of an electrochemical proton gradient. An energy-dependent acceleration of the Na+ efflux rate is observed at all external pHs between 5.5 and 7.5 and is prevented by uncoupling agents. The contributions of the electrical potential (delta psi) and chemical potential (delta pH) of H+ to the mechanism of Na+ efflux acceleration have been studied by determining the effects of (a) selective dissipation of delta psi and delta pH in respiring membrane vesicles with valinomycin or nigericin and (b) imposition of outwardly directed K+ diffusion gradients (imposed delta psi, interior negative) or acetate diffusion gradients (imposed delta pH, interior alkaline). The data indicate that, at pH 6.6 and 7.5, delta pH and delta psi individually and concurrently accelerate the downhill Na+ efflux rate. At pH 5.5, the Na+ efflux rate is enhanced by delta pH only when the imposed delta pH exceeds a threshold delta pH value; moreover, an imposed delta psi which per se does not enhance the Na+ efflux rate does contribute to the acceleration of Na+ efflux when imposed simultaneously with a delta pH higher than the threshold delta pH value. The results strongly suggest that the Na+-H+ antiport mechanism catalyzes the downhill Na+ efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

8.
The relationship between tonoplast-bound ATPase activity and the magnitude of the electrochemical proton gradient has been investigated on tightly sealed vesicles prepared from rubber-tree (Hevea brasiliensis) latex. A variety of methods have been used to modify, either alone or together, the two components of the electrochemical proton gradient (delta mu H+). When the delta pH component was decreased either by titration with (NH4)2SO4 or by addition of protonophores or nigericin in the presence of K+, ATPase activity was stimulated. On the other hand, when the delta psi component was decreased either by addition of lipophilic cations or by addition of valinomycin in the presence of K+, ATPase activity decreased. It is concluded that activity of the tonoplast-bound ATPase is regulated by changes in the electrochemical proton gradient across the tonoplast, so that, once the maximum proton gradient is established across the tonoplast, any perturbation of the equilibrium state should result in the increased rate of ATP hydrolysis as the enzyme attempts to re-establish the initial gradient.  相似文献   

9.
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, is transported into bovine synaptic vesicles in a manner that is ATP dependent and requires a vesicular electrochemical proton gradient. We studied the electrical and chemical elements of this driving force and evaluated the effects of chloride on transport. Increasing concentrations of Cl- were found to increase the steady-state ATP-dependent vesicular pH gradient (delta pH) and were found to concomitantly decrease the vesicular membrane potential (delta psi). Low millimolar chloride concentrations, which cause 3-6-fold stimulation of vesicular glutamate uptake, caused small but measurable increases in delta pH and decreases in delta psi, when compared to control vesicles in the absence of chloride. Nigericin in potassium buffers was used to alter the relative proportions of delta pH and delta psi. Compared to controls, at all chloride concentrations tested, nigericin virtually abolished delta pH and increased the vesicle interior positive delta psi. Concomitantly, nigericin increased ATP-dependent glutamate uptake in 0-1 mM chloride but decreased glutamate uptake in 4 mM (45%), 20 mM (80%), and 140 mM (75%) Cl- (where delta pH in the absence of nigericin was large). These findings suggest that either delta psi, delta pH, or a combination can drive glutamate uptake, but to different degrees. In the presence of 4 mM Cl-, where uptake is optimal, both delta psi and delta pH contribute to the driving force for uptake. When the extravesicular pH was increased from 7.4 to 8.0, more Cl- was required to stimulate vesicular glutamate uptake. In the absence of Cl-, as extravesicular pH was lowered to 6.8, uptake was over 3-fold greater than it was at pH 7.4. As extravesicular pH was reduced from 8.0 toward 6.8, less Cl- was required for maximal stimulation. Decreasing the extravesicular pH from 8.0 to 6.8 in the absence of Cl- significantly increased glutamate uptake activity, even though proton-pumping ATPase activity actually decreased about 45% under identical conditions. In the absence of chloride, nigericin increased glutamate uptake at all the pH values tested except pH 8.0. Glutamate uptake at pH 6.8 in the presence of nigericin was over 6-fold greater than uptake at pH 7.4 in the absence of nigericin. We conclude from these experiments that optimal ATP-dependent glutamate uptake requires a large delta psi and a small delta pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Washed cells of the cadmium-sensitive Staphylococcus aureus 17810S accumulated 109Cd under anaerobic conditions via the Mn2+ porter down delta psi in 1 or 100 mM phosphate buffer, pH 7; in washed cells of the cadmium-resistant S. aureus 17810R 109Cd accumulation was highly reduced. Nigericin did not stimulate anaerobic Cd2+ accumulation by strain 17810R in 100 mM phosphate buffer, suggesting that delta psi could energize Cd2+ efflux. In 1 mM phosphate buffer nigericin restored Cd2+ accumulation via the Mn2+ porter down delta psi in strain 17810R, indicating involvement of delta pH in Cd2+ extrusion. Increase of phosphate buffer concentration from 1 to 100 mM and addition of energy source at steady-state caused delta psi-dependent Cd2+ efflux from the nigericin-pretreated cells of strain 17810R. This suggests that the Cd2+ efflux system in S. aureus may require energy of both ATP and delta mu H+.  相似文献   

11.
The isolated uncoupling protein (UCP) from brown fat adipose tissue mitochondria has been reconstituted into artificial phospholipid vesicles. Because of the high lability of H+ transport, several new steps have been introduced in the reconstitution; the detergent octyl-POE, the addition of phospholipids to mitochondria prior to solubilization and purification, the vesicle formation by rapid removal of detergent with polystyrene beads and of external salts by a mixed ion exchange. In the K+-loaded proteoliposomes, H+ influx can be induced by a diffusion potential on addition of valinomycin. H+ influx is inhibited to more than 90% by GTP addition, in the assay for UCP activity. By reversing delta psi with external K+, H+ efflux is measured, however, at a four times lower rate. In vesicles loaded with internal GTP, H+ influx is fully inhibited but can be activated by Dowex-OH treatment to an even higher rate than that found in the GTP-free vesicles. Binding studies with GTP show that most of the active UCP are oriented with the binding site outside as in mitochondria, and that in GTP-loaded vesicles GTP is also bound at the outside. The rate of H+ transport is linearly dependent on the membrane potential. Despite the ordered orientation, there is no 'valve' mechanism, since there is H+ efflux with a reversed potential. pH dependency is only small between pH 6.5 and 7.5, indicating that the H+-translocating site differs from the highly pH-dependent nucleotide-binding site. The turnover number of reconstituted UCP is commensurate with mitochondrial function and indicates a carrier instead of a channel-type H+ transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Plasma membrane vesicles were reconstituted by freezing and thawing of purified plasma membrane fraction from the yeast Metschnikowia reukaufii and phosphatidylcholine (type II-S from Sigma). The reconstituted plasma membrane vesicles generated a proton gradient (acidic inside) upon addition of ATP in presence of alkali cations. delta pH generation was most efficient when K+ was present both outside and inside the plasma membrane vesicles. Both ATPase activity and proton translocation in plasma membrane vesicles were inhibited by orthovanadate (50% inhibition at 100 microM). Plasma membrane vesicles reconstituted without added phosphatidylcholine generated in addition to delta pH, also an electrical potential difference delta psi (inside positive). Delta psi generation exhibited no K+ specificity. 50 microM dicyclohexylcarbodiimide inhibited completely delta psi generation whereas the K+-channel blocker quinine (5 microM) caused an 8-fold increase of delta psi. The proton gradient was much less affected by the agents. Taking into account the K+-dependent stimulation of the plasma membrane ATPase of M. reukaufii, these results further support the conclusion that the ATPase operates as a partially electrogenic H+/K+ exchanger, as was also suggested for other yeast plasma membrane ATPases.  相似文献   

13.
The energy dependence of gamma-aminobutyric acid (GABA) uptake was characterized in rat brain synaptic vesicles and in proteoliposomes reconstituted with a new procedure from vesicular detergent extracts. The proteoliposomes displayed high ATP-dependent GABA uptake activity with properties virtually identical to those of intact vesicles. GABA uptake was similar at chloride concentrations of 0 and 150 mM, i.e. conditions under which either the membrane potential (delta psi) or the pH difference (delta pH) predominates. Delta psi was gradually dissipated by increasing the concentration of SCN-. GABA uptake was reduced by 10 mM SCN-, showing less sensitivity to delta psi reduction than glutamate uptake but more than dopamine uptake. Dissipation of delta pH with NH+4 abolished GABA uptake at pH 7.3, whereas no significant inhibition occurred at pH 6.5. In contrast, dopamine uptake was inhibited more strongly, even at pH 6.5, and glutamate uptake was not reduced in either condition. We conclude that GABA uptake is driven by both components of the proton electrochemical gradient, delta pH and delta psi, and that this is different from the uptake of both dopamine and glutamate, which is more strongly dependent on delta pH and delta psi, respectively. Thus, our data suggest that GABA uptake is electrogenic and occurs in exchange for protons.  相似文献   

14.
The effects of malate, succinate, and glutamate on the kinetics of changes in the pH gradient (delta pH) and membrane potential (delta psi) on the peribacteroid membrane (PBM) of the symbiosomes of bean root nodules varying in age were recorded spectrophotometrically. Addition of all the tested metabolites to potassium-free incubation medium stimulated a passive acidification of the peribacteroid space (PBS) and dissipation of delta psi in PBM of young developing nodules in the presence of the K+/H+ antiporter nigericin in the medium. However, in mature nodules with a high nitrogen-fixing activity, only malate and succinate (but not glutamate) increased delta pH during both passive and ATP-dependent PBS acidification. Dicarboxylates also caused dissipation of both delta pH in the presence of nigericin in the medium and delta psi generated on PBM by H+-ATPase. A decrease in the effects of metabolites on delta pH and the absent activity of the PBM H+ pump were observed in the aging nodules. The obtained data on the changes in deltapH and dlta psi caused by the metabolites in question suggest that PBM is permeable for all these metabolites only in young nodules. Only malate and succinate (but not glutamate) are transported through PBM in mature nodules; and the rate of metabolite translocation through PBM in aging nodules is decreased.  相似文献   

15.
The H(+)-ATPase from chloroplasts (CF0F1) was isolated, purified and reconstituted into liposomes from phosphatidylcholine/phosphatidic acid. A transmembrane pH difference, delta pH, and a transmembrane electric potential difference, delta psi, were generated by an acid/base transition. The rate of ATP synthesis was measured at constant delta pH and constant delta psi as a function of temperature between 5 degrees C and 45 degrees C. The activation energy was 55 kJ mol-1. CF0F1 was coreconstituted with bacteriorhodopsin at a molar ratio of approximately 1:170 in the same type of liposomes. Illumination of the proteoliposomes leads to proton transport into the vesicles generating a constant delta pH = 1.8. The dependence of the rate of ATP synthesis on ADP concentration was measured with CF0F1 in the oxidized state, E(ox), and in the reduced state, E(red). The results can be described by Michaelis-Menten kinetics with the following parameters: Vmax = 0.5 s-1, Km = 8 microM for E(ox) and Vmax = 2.0 s-1, Km = 8 microM for E(red).  相似文献   

16.
J W Hell  L Edelmann  J Hartinger  R Jahn 《Biochemistry》1991,30(51):11795-11800
The gamma-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3'-diisopropylthiodicarbocyanine iodide, and changes of the H+ gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K+ gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of [3H]GABA which was saturable. Similarly, [3H]glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K(+)-loaded proteoliposomes in a buffer free of K+ or Na+ ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H+ ATPase by incubation of K(+)-loaded proteoliposomes in equimolar K+ buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and beta-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, our data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.  相似文献   

17.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

18.
S Ramos  H R Kaback 《Biochemistry》1977,16(5):854-859
In the previous paper [ramos, S., and Kaback, H.R. (1977), Biochemistry 16 (preceding paper in this issue)], it was demonstrated that Escherichia coli membrane vesicles generate a large electrochemical proton gradient (delta-muH+) under appropriate conditions, and some of the properties of delta-muH+ and its component forces [i.e., the membrane potential (delta psi) and the chemical gradient of protons (deltapH)] were described. In this paper, the relationship between delta-muH+, delta psi, and deltapH and the active transport of specific solutes is examined. Addition of lactose or glucose 6-phosphate to membrane vesicles containing the appropriate transport systems results in partial collapse of deltapH, providing direct evidence for the suggestion that respiratory energy can drive active transport via the pH gradient across the membrane. Titration studies with valinomycin and nigericin lead to the conclusion that, at pH 5.5, there are two general classes of transport systems: those that are driven primarily by delta-muH+ (lactose, proline, serine, glycine, tyrosine, glutamate, leucine, lysine, cysteine, and succinate) and those that are driven primarily by deltapH (glucose 6-phosphate, D-lactate, glucuronate, and gluconate). Importantly, however, it is also demonstrated that at pH 7.5, all of these transport systems are driven by delta psi which comprises the only component of delta-muH+ at this external pH. In addition, the effect of external pH on the steady-state levels of accumulation of different solutes is examined, and it is shown that none of the pH profiles correspond to those observed for delta-muH+, delta psi, or deltapH. Moreover, at external pH values above 6.0-6.5, delta-muH+ is insufficient to account for the concentration gradients established for each substrate unless the stoichiometry between protons and accumulated solutes is greater than unity. The results confirm many facets of the chemiosmotic hypothesis, but they also extend the concept in certain important respects and allow explanations for some earlier observations which seemed to preclude the involvement of chemiosmotic phenomena in active transport.  相似文献   

19.
Respiration of cytochrome oxidase-containing sonicated proteoliposomes is partially stimulated by nigericin or by alamethicin. Valinomycin at low concentrations fully releases the nigericin-dependent respiration but inhibits the alamethicin-dependent respiration. Respiratory stimulation by the gated ionophore alamethicin must occur in the face of a continuing membrane potential; stimulation by nigericin is accompanied by an increase in the measured membrane potential. We conclude that delta pH rather than delta psi may be the main source of respiratory control in our type of proteoliposomes.  相似文献   

20.
A S Verkman  H E Ives 《Biochemistry》1986,25(10):2876-2882
The pH, delta pH, and membrane potential dependences of H+/OH-permeability in renal brush border membrane vesicles (BBMV) were studied by using the entrapped pH indicator 6-carboxyfluorescein (6CF). Quantitative H+/OH-fluxes (JH) were obtained from a calibration of the fluorescence response of 6CF to intravesicular pH using vesicles prepared with varying intravesicular and solution pHs. Intravesicular buffer capacity, determined by titration of lysed vesicles, increased monotonically from 140 to 260 mequiv/L in the pH range 5-8. JH was measured by subjecting voltage-clamped BBMV (K+/valinomycin) to preformed pH gradients over the pH range 5-8 and measuring the rate of change of intravesicular pH. For small preformed pH gradients (0.4 pH unit) JH [6 nequiv s-1 (mg of protein)-1] was nearly independent of pH (5-8), predicting a highly pH dependent H+ permeability coefficient. JH increased in a curvilinear manner from 6 to 104 nequiv s-1 (mg of protein)-1 as delta pH increased from 0.4 to 2.5. JH increased linearly [1.6-7.3 nequiv s-1 (mg of protein)-1] with induced K+ diffusion potentials (21-83 mV) in the absence of a pH gradient. These findings cannot be explained by simple diffusion of H+ or OH- or by mobile carrier models. Two mechanisms are proposed, including a lipid diffusion mechanism, facilitated by binding of H+/OH- to fixed sites in the membrane, and a linear H2O strand model, where dissociation of H2O in the membrane fixes H+ and OH- concentrations in strands, which can result in net H+/OH- transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号