首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smooth muscle contraction is regulated by changes in cytosolic Ca2+ concentration ([Ca2+]i). In response to stimulation, Ca2+ increase in a single cell can propagate to neighbouring cells through gap junctions, as intercellular Ca2+ waves. To investigate the mechanisms underlying Ca2+ wave propagation between smooth muscle cells, we used primary cultured rat mesenteric smooth muscle cells (pSMCs). Cells were aligned with the microcontact printing technique and a single pSMC was locally stimulated by mechanical stimulation or by microejection of KCl. Mechanical stimulation evoked two distinct Ca2+ waves: (1) a fast wave (2 mm/s) that propagated to all neighbouring cells, and (2) a slow wave (20 μm/s) that was spatially limited in propagation. KCl induced only fast Ca2+ waves of the same velocity as the mechanically induced fast waves. Inhibition of gap junctions, voltage-operated calcium channels, inositol 1,4,5-trisphosphate (IP3) and ryanodine receptors, shows that the fast wave was due to gap junction mediated membrane depolarization and subsequent Ca2+ influx through voltage-operated Ca2+ channels, whereas, the slow wave was due to Ca2+ release primarily through IP3 receptors. Altogether, these results indicate that temporally and spatially distinct mechanisms allow intercellular communication between SMCs. In intact arteries this may allow fine tuning of vessel tone.  相似文献   

2.
The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other mechanism involves the passage of a small messenger through gap junctions to the cytoplasm of the neighboring cells, inducing depolarization of the plasma membrane with subsequent opening of membrane bound voltage-operated calcium channels. Next, we found that osteoblasts can propagate these signals to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts in response to mechanical stimulation. Thus, intercellular calcium signaling can be a mechanism by which mechanical stimuli on bone are translated into biological signals in bone cells, and propagated through the network of cells in bone. Further, the observations offer new pharmacological targets for the modulation of bone turnover, and perhaps even for the treatment of bone metabolic disorders.  相似文献   

3.
We here describe intercellular calcium waves as a novel form of cellular communication among thymic epithelial cells. We first characterized the mechanical induction of intercellular calcium waves in different thymic epithelial cell preparations: cortical 1-4C18 and medullary 3-10 thymic epithelial cell lines and primary cultures of thymic "nurse" cells. All thymic epithelial preparations responded with intercellular calcium wave propagation after mechanical stimulation. In general, the propagation efficacy of intercellular calcium waves in these cells was high, reaching 80-100% of the cells within a given confocal microscopic field, with a mean velocity of 6-10 µm/s and mean amplitude of 1.4- to 1.7-fold the basal calcium level. As evaluated by heptanol and suramin treatment, our results suggest the participation of both gap junctions and P2 receptors in the propagation of intercellular calcium waves in thymic nurse cells and the more prominent participation of gap junctions in thymic epithelial cell lines. Finally, in cocultures, the transmission of intercellular calcium wave was not observed between the mechanically stimulated thymic epithelial cell and adherent thymocytes, suggesting that intercellular calcium wave propagation is limited to thymic epithelial cells and does not affect the neighboring thymocytes. In conclusion, these data describe for the first time intercellular calcium waves in thymic epithelial cells and the participation of both gap junctions and P2 receptors in their propagation. gap junctions; connexin43; P2 receptors; intercellular communication  相似文献   

4.
Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation.  相似文献   

5.
Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine activation of P2Y receptors, and the other requires gap junctional communication. In the current work we ask whether long-term culture of osteoblast-like cells affects the propagation of ICW by these two mechanisms. Human osteoblast-like cells were isolated from bone marrow. Mechanically induced ICW were assessed by video imaging of Fura-2 loaded cells after 1, 2 and 4 months culture. The P2Y2 receptor and the gap junction protein Cx43 were assessed by Western blot and real-time PCR. In resting conditions, P2Y mediated ICW prevailed and spread rapidly to about 13 cells. P2Y receptor desensitization by ATP disclosed gap junction-mediated ICW which diffused more slowly and involved not more than five to six cells. After 2 months in culture, ICW appeared slower and wave propagation was much less inhibited by P2Y desensitization, suggesting an increase in gap junction-mediated ICW. After 4 months in culture cells still responded to addition of ATP, but P2Y desensitization did not inhibit ICW propagation. Our data indicate that the relative role of P2Y-mediated and gap junction-mediated ICW changes during osteoblast differentiation in vitro. In less differentiated cells, P2Y-mediated ICW predominate, but as cells differentiate in culture, gap-junction-mediated ICW become more prominent. These results suggest that P2Y receptor-mediated and gap junction-mediated mechanisms of intercellular calcium signaling may play different roles during differentiation of bone-forming cells.  相似文献   

6.
Microglia, the immune cells of the central nervous system, are attracted to sites of injury. The injury releases adenosine triphosphate (ATP) into the extracellular space, activating the microglia, but the full mechanism of release is not known. In glial cells, a family of physiologically regulated unpaired gap junction channels called innexons (invertebrates) or pannexons (vertebrates) located in the cell membrane is permeable to ATP. Innexons, but not pannexons, also pair to make gap junctions. Glial calcium waves, triggered by injury or mechanical stimulation, open pannexon/innexon channels and cause the release of ATP. It has been hypothesized that a glial calcium wave that triggers the release of ATP causes rapid microglial migration to distant lesions. In the present study in the leech, in which a single giant glial cell ensheathes each connective, hydrolysis of ATP with 10 U/ml apyrase or block of innexons with 10 µM carbenoxolone (CBX), which decreased injury-induced ATP release, reduced both movement of microglia and their accumulation at lesions. Directed movement and accumulation were restored in CBX by adding ATP, consistent with separate actions of ATP and nitric oxide, which is required for directed movement but does not activate glia. Injection of glia with innexin2 (Hminx2) RNAi inhibited release of carboxyfluorescein dye and microglial migration, whereas injection of innexin1 (Hminx1) RNAi did not when measured 2 days after injection, indicating that glial cells’ ATP release through innexons was required for microglial migration after nerve injury. Focal stimulation either mechanically or with ATP generated a calcium wave in the glial cell; injury caused a large, persistent intracellular calcium response. Neither the calcium wave nor the persistent response required ATP or its release. Thus, in the leech, innexin membrane channels releasing ATP from glia are required for migration and accumulation of microglia after nerve injury.  相似文献   

7.
Intercellular communication of epithelial cells was examined by measuring changes in intracellular calcium concentration ([Ca2+]i). Mechanical stimulation of respiratory tract ciliated cells in culture induced a wave of increasing Ca2+ that spread, cell by cell, from the stimulated cell to neighboring cells. The communication of these Ca2+ waves between cells was restricted or blocked by halothane, an anesthetic known to uncouple cells. In the absence of extracellular Ca2+, the mechanically stimulated cell showed no change or a decrease in [Ca2+]i, whereas [Ca2+]i increased in neighboring cells. Iontophoretic injection of inositol 1,4,5-trisphosphate (IP3) evoked a communicated Ca2+ response that was similar to that produced by mechanical stimulation. These results support the hypothesis that IP3 acts as a cellular messenger that mediates communication through gap junctions between ciliated epithelial cells.  相似文献   

8.
The periodontal ligament (PDL) is a specialized, mechanically responsive tissue that adapts via cellular responses to equilibrate the effects of mechanical stress on teeth. However, the mechanism of remodelling by which individual cells in periodontal tissue detect and respond to mechanical stress is not well understood. To identify the cellular mechanisms induced by mechanical stress in the periodontal ligament, we examined the effects of cyclic stretching on periodontal ligament fibroblast-like cells (PDL cells). Furthermore, we investigated the effects of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and interaction with peripheral blood mononuclear cells (PBMCs) on mechanically-simulated PDL cells. PDL cells were cultured on type I collagen-coated silicon membranes with 10% FBS alpha-MEM, and then subjected to cyclic mechanical stimulation (1 s stretching/1 s relaxation, 15% maximum elongation). Alkaline phosphatase activity was monitored by cytochemical and spectrophotometric methods. Morphologically, the cells assumed a spindle shape, and the cytoskeletal components, including microtubules and F-actin filaments, were aligned perpendicular to the strain force vector. Cyclic stretching decreased ALPase activity in PDL cells. The anabolic systemic hormone 1,25(OH)(2)D(3) increased ALPase activity, but this effect was suppressed by cyclic stretching. ALPase activities were reduced by co-culture with PBMCs, including lymphocytes and monocytes. This PBMC-induced ALPase reduction was synergistically reduced by cyclic stretching. ALPase activity was decreased by co-culture with PBMCs, and ALPase activity was reduced synergistically by treatment with PBMCs and cyclic stretching. We conclude that PDL cells changed their shape and alignment in response to cyclic stretching. Furthermore, local factors, such as mechanical stress and PBMCs, showed synergistic suppressive effects on ALPase activity.  相似文献   

9.
McKean JM  Hsieh AH  Sung KL 《Biorheology》2004,41(2):139-152
The anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) are two commonly injured structures in the human knee. While the MCL heals post-traumatically, the ACL does not. Since growth factors play a major role in the proliferation phase of wound healing, we compared the differential effects of epidermal growth factor (EGF) on adhesion and proliferation of ACL and MCL fibroblasts. Using a micropipette/micromanipulator system we found that cells subjected to shorter incubation periods (15 minutes) with EGF (5, 10, 50 ng/ml) showed a general increase in adhesion to the extracellular matrix fibronectin while cells subjected to longer incubation periods (4, 6, 10, and 24 hr) with EGF (5 ng/ml) showed decreases in adhesion. For both incubation durations, MCL fibroblasts displayed a greater change in adhesion than ACL fibroblasts, when compared to control. Investigation of integrin expression showed no fluctuation in cell surface expression of the alpha5 subunit of the FN-binding integrin alpha5beta1 for all EGF (5 ng/ml) incubation times. MCL cells showed a significant increase in proliferation upon stimulation with EGF compared to ACL cells when cultured in FN coated wells. The results found in this study help provide a better understanding of EGF's role in adhesion and proliferation, two events that may contribute to the differential healing response between ACL and MCL fibroblasts. Following exposure to EGF, ACL and MCL cells initially respond by increasing their adhesion strength. MCL cells respond to all concentrations of EGF while ACL cells appear to have a threshold concentration after which EGF effects plataeu. After this initial response period (<10 hr) cells exhibit lower adhesion strength and higher proliferation rate. It is possible that the release from FN serves to enhance the ability of the cells to proliferate. These results may aid in understanding the ligament healing process.  相似文献   

10.
Stalmans P  Himpens B 《Cell calcium》1999,25(6):391-399
Membrane deformation induced by a mechanical stimulus increases the [Ca2+]i in cultured retinal pigment epithelial (RPE) cells, and in many other cell types. In this study, confocal microscopy and Ca(2+)-measurements using the fluorescent dye fluo-3 were used to measure the spatiotemporal characteristics of the Ca(2+)-wave propagation during a mechanical stimulation in Long Evans (LE) RPE cells or dystrophic Royal College of Surgeons (RCS) RPE cells. Ca2+ signals were recorded in the mechanically stimulated cell and in the neighboring cells. A regenerative Ca(2+)-wave with a decreasing rate of propagation was found in the stimulated cells. The rate of propagation was significantly slower in RCS-RPE cells compared to LE-RPE cells. Incubation with thapsigargin significantly lowered the propagation rate in both LE- and RCS-RPE cells. The amplitude of the [Ca2+]i-rise in the nucleus and cytoplasm was differentially modulated by protein kinase C in RCS-RPE cells, but not in LE-RPE cells. It is concluded that RCS-RPE cells have intracellular Ca(2+)-regulating properties which are different from those of LE-RPE cells.  相似文献   

11.
The adult human anterior cruciate ligament (ACL) has a poor functional healing response, whereas the medial collateral ligament (MCL) does not. The difference in intrinsic properties of these ligament cells can be due to their different response to their located microenvironment. Hypoxia is a key environmental regulator after ligament injury. In this study, we investigated the differential response of ACL and MCL fibroblasts to hypoxia on hypoxia-inducible factor-1α, vascular endothelial growth factor, and matrix metalloproteinase-2 (MMP-2) expression. Our results show that ACL cells responded to hypoxia by up-regulating the HIF-1α expression significantly as compared to MCL cells. We also observed that in MCL fibroblasts response to hypoxia resulted in increase in expression of VEGF as compared to ACL fibroblasts. After hypoxia treatment, mRNA and protein levels of MMP-2 increased in both ACL and MCL. Furthermore we found in ACL pro-MMP-2 was converted more into active form. However, hypoxia decreased the percentage of wound closure for both ligament cells and had a greater effect on ACL fibroblasts. These results demonstrate that ACL and MCL fibroblasts respond differently under the hypoxic conditions suggesting that these differences in intrinsic properties may contribute to their different healing responses and abilities.  相似文献   

12.
Ligament mechanical behavior is primarily regulated by fibrous networks of type I collagen. Although these fibrous networks are typically highly aligned, healthy and injured ligament can also exhibit disorganized collagen architecture. The objective of this study was to determine whether variations in the collagen fibril network between neighboring ligaments can predict observed differences in mechanical behavior. Ligament specimens from two regions of bovine fetlock joints, which either exhibited highly aligned or disorganized collagen fibril networks, were mechanically tested in uniaxial tension. Confocal microscopy and FiberFit software were used to quantify the collagen fibril dispersion and mean fibril orientation in the mechanically tested specimens. These two structural parameters served as inputs into an established hyperelastic constitutive model that accounts for a continuous distribution of planar fibril orientations. The ability of the model to predict differences in the mechanical behavior between neighboring ligaments was tested by (1) curve fitting the model parameters to the stress response of the ligament with highly aligned fibrils and then (2) using this model to predict the stress response of the ligament with disorganized fibrils by only changing the parameter values for fibril dispersion and mean fibril orientation. This study found that when using parameter values for fibril dispersion and mean fibril orientation based on confocal imaging data, the model strongly predicted the average stress response of ligaments with disorganized fibrils (\(R^{2}=0.97\)); however, the model only successfully predicted the individual stress response of ligaments with disorganized fibrils in half the specimens tested. Model predictions became worse when parameters for fibril dispersion and mean fibril orientation were not based on confocal imaging data. These findings emphasize the importance of collagen fibril alignment in ligament mechanics and help advance a mechanistic understanding of fibrillar networks in healthy and injured ligament.  相似文献   

13.
Rhythmical electrostimulation is able to produce in a tissue strip of Bolinopsis series of beats of combs-plates. However, the beat frequency, within one series, is only poorly controlled by electrical stimuli. Isolated comb-plate cells with a cilium cut off maintain rhythmical contractions stimulated both mechanically and electrically. A lot of microtubules has been found in the apical region of these cells. It is supposed that it is these microtubules, probably together with the associated root filaments, that are responsible for cell motility. Mutual mechanical stimulation of ciliary cells in these motions is, presumably, a signal providing intratissue propagation of metachronal wave.  相似文献   

14.
Living tissues show an adaptive response to mechanical loading by changing their internal structure and morphology. Understanding this response is essential for successful tissue engineering of load-bearing structures, such as the aortic valve. In this study, mechanically induced remodeling of the collagen architecture in the aortic valve was investigated. It was hypothesized that, in uniaxially loaded regions, the fibers aligned with the tensile principal stretch direction. For biaxial loading conditions, on the other hand, it was assumed that the collagen fibers aligned with directions situated between the principal stretch directions. This hypothesis has already been applied successfully to study collagen remodeling in arteries. The predicted fiber architecture represented a branching network and resembled the macroscopically visible collagen bundles in the native leaflet. In addition, the complex biaxial mechanical behavior of the native valve could be simulated qualitatively with the predicted fiber directions. The results of the present model might be used to gain further insight into the response of tissue engineered constructs during mechanical conditioning.  相似文献   

15.
Nishitani WS  Saif TA  Wang Y 《PloS one》2011,6(10):e26181
A new device was designed to generate a localized mechanical vibration of flexible gels where human umbilical vein endothelial cells (HUVECs) were cultured to mechanically stimulate these cells at subcellular locations. A Fluorescence Resonance Energy Transfer (FRET)-based calcium biosensor (an improved Cameleon) was used to monitor the spatiotemporal distribution of intracellular calcium concentrations in the cells upon this mechanical stimulation. A clear increase in intracellular calcium concentrations over the whole cell body (global) can be observed in the majority of cells under mechanical stimulation. The chelation of extracellular calcium with EGTA or the blockage of stretch-activated calcium channels on the plasma membrane with streptomycin or gadolinium chloride significantly inhibited the calcium responses upon mechanical stimulation. Thapsigargin, an endoplasmic reticulum (ER) calcium pump inhibitor, or U73122, a phospholipase C (PLC) inhibitor, resulted in mainly local calcium responses occurring at regions close to the stimulation site. The disruption of actin filaments with cytochalasin D or inhibition of actomyosin contractility with ML-7 also inhibited the global calcium responses. Therefore, the global calcium response in HUVEC depends on the influx of calcium through membrane stretch-activated channels, followed by the release of inositol trisphosphate (IP3) via PLC activation to trigger the ER calcium release. Our newly developed mechanical stimulation device can also provide a powerful tool for the study of molecular mechanism by which cells perceive the mechanical cues at subcellular levels.  相似文献   

16.
Mechanical stimulation was used to initiate Ca2+waves in rat liver epithelial cells in order to ascertain the degree to which gap junctional intercellular communication (GJIC) is involved in communication of Ca2+to adjacent cells and to assess alternative Ca2+signaling pathways that may be present between these cells. In both WB-F344 cells, which show a high degree of GJIC, and WB-aB1 cells, which are GJIC deficient, mechanical stimulation of a single cell induced a Ca2+wave which propagated away from the point of stimulation, across cell borders, to neighboring cells directly or indirectly in contact with the stimulated cell. In addition, the Ca2+wave was transmitted to nearby isolated cells that exhibited no direct or indirect contact with the stimulated cell. Treatment of cells with 18β-glycyrrhetinic acid, a compound that has been shown to block GJIC, did not significantly affect propagation of the Ca2+wave. In contrast, treatment with suramin, a P2-purinergic receptor inhibitor, significantly reduced both the rate and the extent of Ca2+wave propagation in WB-F344 cells and completely blocked its propagation in WB-aB1 cells. Cotreatment with suramin and glycyrrhetinic acid was found to completely block the mechanically induced Ca2+wave in both cell lines. These studies indicate that mechanically induced cell injury in rat liver epithelial cells initiates signaling through at least two pathways, involving intercellular communication via gap junctions and extracellular communication via ATP activation of purinergic receptors.  相似文献   

17.
Regulation of ciliary activity in the mammalian respiratory tract   总被引:1,自引:0,他引:1  
A computer-assisted transillumination, photoelectronic technique has been used to measure the beat frequency of cilia of rabbit tracheal cells grown in culture. When ciliated cells are mechanically stimulated with a microprobe the cells respond rapidly by increasing the beat frequency of their cilia. This mechanosensitive response is not limited to the stimulated cell, but is communicated in all directions to neighboring cells. To characterize the progression of this communicated response we used an automated computer-assisted imaging system to examine high-speed films of responding cells. The time it takes for the response to be transmitted between cells is slow (1-3 sec) with each cell responding after a lag-time that is proportional to the distance of the cell from the stimulated cell. We have confirmed that gap junctions are present between cells and that adjacent or non-adjacent ciliated, as well as non-ciliated, cells are electrically coupled. To correlate the mechanosensitive response with intracellular calcium fluxes we have used fura-2, a calcium-specific fluorescent dye, and digital video microscopy. Mechanical stimulation of the cultured ciliated cells, in the presence of extracellular calcium, resulted in an initial increase in intracellular calcium, which was communicated to neighboring cells. Without extracellular calcium, mechanosensitivity of cultured cells was lost and a small decrease in intracellular calcium was observed in the stimulated cell. However, neighboring cells still displayed an increase in intracellular calcium. The time course and general pattern of calcium increase in adjacent cells was similar to the responses in ciliary activity produced by mechanical stimulation. Ciliary beat frequency is also elevated by beta-adrenergic drugs independently of mechanosensitivity. These responses are important because they could provide a dual regulatory mechanism for the control of mucus transport. Adrenergic agonists could provide non-specific control by increasing ciliary activity throughout the airways while mechanosensitivity could provide local control by increasing activity in those regions of heavy mucus load.  相似文献   

18.
Mechanically induced intercellular Ca2+ signalling was investigated in differentiated HOBIT osteoblastic cells. HOBIT cells express connexin43 clustered at the cell-to-cell boundary and display functional intercellular coupling assessed by intercellular transfer of Lucifer yellow. Mechanical stimulation of single cells, besides leading to an intracellular Ca2+ rise, induced a wave of increased Ca2+ that was radially propagated to surrounding cells. Treatment of cells with thapsigargin blocked mechanically induced signal propagation. Intercellular Ca2+ spreading was inhibited by 18alpha-glycyrrhetinic acid, demonstrating the involvement of gap junctions in signal propagation. Suramin and apyrase decreased the extent of wave propagation, suggesting that ATP-mediated paracrine stimulation contribute to cell-to-cell signalling. The functional expression of gap-junctional hemichannels was evidenced in experiments of Mn2+ quenching, extracellular dye uptake and intracellular Ca2+ release, activated by uptake of inositol 1,4,5-trisphosphate from the external medium. Gap-junctional hemichannels were activated by low extracellular Ca2+ concentrations and inhibited by 18alpha-glycyrrhetinic acid.  相似文献   

19.
Experiments using confocal laser microscopy on the rat osteosarcoma cell line (ROS 17/2.8) indicate that mechanical stimulation elicits pronounced [Ca2+](i)transients in the MS (mechanically stimulated) cell, which then propagate to the NB (neighbouring) cells. Experiments with Ca(2+)-free solutions or gadolinium suggest that Ca(2+)-influx through stretch-sensitive channels is required. When intracellular stores are depleted with thapsigargin, mechanical stimulation was able to evoke a Ca(2+)transient of reduced amplitude that disappeared entirely after subsequent blocking of Ca(2+)-influx. Heptanol inhibited intercellular propagation of the Ca(2+)transient, demonstrating the involvement of gap junctions in the propagation of the Ca(2+)transient in ROS cells. PKC activation has only a small inhibitory effect, while inhibition of PKC or tyrosine kinase was ineffective. PKA activation reduced the amplitude of the [Ca2+](i)-rise in NB cells, and decreased the percentage of responsive cells. Cells grown in 50mM glucose for 72h presented only a very limited decrease of the Ca(2+)-rise during mechanical stimulation in the MS and NB cells compared to control conditions. PKC downregulation in high glucose did not modulate this effect.The results of our experiments indicate that PKC or sustained high glucose concentrations do not affect gap junctional communication in ROS cells, while activation of PKA has an inhibitory effect. This might indicate that osteoblastic dysfunction in diabetes could be directly related to the high glucose concentrations and not to inhibition of the intercellular communication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号