首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bats in temperate and subtropical regions typically synchronize birth of a single young with peaks in resource availability driven by local climate patterns. In tropical rain forest, insects are available throughout the year, potentially allowing departures from seasonal monoestry. However, reproductive energy budgets may be constrained by the cost of commuting to foraging grounds from distant roosts. To test these hypotheses, we simultaneously tracked female reproductive activity of 11 insectivorous bat species, insect biomass, and local weather variables for 20 months in a Malaysian rain forest. Five species roost in forest structures and hence have low commuting costs, whereas six species depend on caves, which are limited in the landscape, and are presumed to incur higher commuting costs to foraging sites. Monthly insect biomass was positively correlated with monthly rainfall, and there was a significant relationship between insect biomass and lactation in cave‐roosting but not forest‐roosting species. Cave‐roosting species were seasonally monoestrus, with parturition confined to a two‐month period, whereas in forest‐roosting species, pregnancy and lactation were recorded throughout the year. Our results suggest that the energetic costs of commuting from roosts to foraging grounds shape annual reproductive patterns in tropical rain forest insectivorous bats. Ongoing changes in forest landscapes are likely to increase these costs for cave‐roosting bats, further restricting reproductive opportunities. Climate change is projected to influence the timing of rainfall events in many tropical habitats, which may disrupt relationships between rainfall, insect biomass, and bat reproductive timing, further compromising reproductive success.  相似文献   

2.
In this study we investigated the reproductive patterns and postnatal development in the tent-making bat Artibeus watsoni . We sampled two populations in the Golfito Wildlife Refuge and Corcovado National Park, south-western Costa Rica, from June 2003 to March 2005. Most females were pregnant during the months of January and June, and most were lactating in March and July, indicating that this species exhibits seasonal bimodal polyoestry, with the first parturition peak occurring in February–March and the second in June–July. Additionally, we observed a postpartum oestrus following the first parturition, but not after the second. Females entered oestrus again in November–December and had a gestation period of c . 3 months. A female-biased sex ratio of neonates was observed during the second parturition period, and young were born at 32 and 56% of their mothers' body mass and length of forearm, respectively. Adult proportions in length of forearm were attained faster than adult proportions in body mass, and sustained flight was only possible after 35 days of age, when pups had achieved 100 and 80% of adult length of forearm and body mass proportions, respectively. Weaning and roosting independence occurred when young were c . 30–40 days old, and young females appeared to remain close to their place of birth, at least for their first mating period, whereas adult males were never recaptured near their birth site. In addition, sexual maturity was reached in as little as 3 months in females born during the first parturition period, whereas females born during the second birth period in June–July seemed to reach maturity at 6 months of age. Our results show that A. watsoni belongs to the faster lane of the slow–fast continuum of life-history variation in bats, which may be attributed primarily to its roosting and feeding ecology.  相似文献   

3.
Summary The insectivorous bat Myotis lucifugus typically apportions the night into two foraging periods separated by an interval of night roosting. During this interval, many bats occupy roosts that are used exclusively at night and are spatially separate from maternity roosts. The proportion of the night which bats spend roosting, and thus the proportion spent foraging, vary both daily and seasonally in relation to the reproductive condition of the bats, prey density, and ambient temperature. A single, continuous night roosting period is observed during pregnancy. During lactation, females return to maternity roosts between foraging bouts, and night roosts are used only briefly and sporadically. Maximum use of night roosts occurs in late summer after young become volant. Superimposed upon these seasonal trends is day-to-day variation in the bats' nightly time budget. Long night roosting periods and short foraging periods are associated with cool nights and low prey density. This behavioral response may minimize energetic losses during periods of food scarcity.  相似文献   

4.
The unique reproductive patterns, delayed fertilization in females, and asynchrony between spermatogenesis and mating behavior in males are well documented in bats living in temperate latitudes. The present study was undertaken to examine follicle-stimulating hormone (FSH) receptors in the testis of bats, Rhinolophus ferrumequinum, during the annual reproductive cycle. Male bats were captured at natural roosting sites and testicular preparations were subjected to a radioligand binding assay for FSH receptors. The weight of paired testes increased considerably in the spermatogenic period and decreased from the mating to hibernation periods. Meiotic division in the testis was observed in the spermatogenic period but not the mating period. Serum testosterone concentrations increased in the spermatogenic period and rapidly decreased in the mating period. The binding of FSH was specific for mammalian FSHs and detected primarily in the testis. Scatchard plot analyses of the binding of FSH to bat testicular preparations showed straight lines, suggesting the presence of a single class of binding sites. The affinities (equilibrium association constant) of FSH receptors were consistent throughout the annual reproductive cycle. The specific binding per unit weight of testis and total binding in the paired testes were highest in the mating period and in the spermatogenic period, respectively, among reproductive periods. The accumulation of cyclic adenosine 3', 5'-monophosphate to FSH stimulation was higher in the spermatogenic period than in the hibernation period. These findings suggest that testicular function of bats is associated with seasonal changes in the number of binding sites, while the number per target cell and the activation of adenylate cyclase led by FSH-receptor complex considerably decreases in the hibernation period.  相似文献   

5.
In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest‐roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost‐switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.  相似文献   

6.
The reproductive biology of the smooth-hound shark Mustelus mustelus was studied in the Gulf of Gabès (southern Tunisia). Females were found to mature between 1075 and 1230 mm total length ( L T) whereas males matured between 880 and 1120 mm L T. The L T at which 50% of the population reached maturity was 971 and 1172 mm for males and females, respectively. Male gonads were symmetrical in terms of mass and both functional, whereas in females only the right ovary was functional. The seasonal changes in the oocytes and testes development, embryo length and the occurrence of near-term and post-partum females showed that this species displayed a clearly defined annual reproductive cycle with parturition occurring during late April and early May, after a gestation period of 10–11 months. Mating took place during May and early June and fertilization occurred from early June to early July. The embryo sex ratio was not significantly different from unity. Litter size varied from four to 18 embryos and was positively correlated with maternal L T. The young were born with a L T of 340–420 mm.  相似文献   

7.
In North America, Mexican free-tailed bats (Tadarida brasiliensis mexicana) consume vast numbers of insects contributing to the economic well-being of society. Mexican free-tailed bats have declined due to historic guano mining, roost destruction, and bioaccumulation of organochlorine pesticides. Long-distance migrations and dense congregations at roosts exacerbate these declines. Wind energy development further threatens bat communities worldwide and presents emerging challenges to bat conservation. Effective mitigation of bat mortality at wind energy facilities requires baseline data on the biology of affected populations. We collected data on age, sex, and reproductive condition of Mexican free-tailed bats at a cave roost in eastern Nevada located 6 km from a 152-MW industrial wind energy facility. Over 5 years, we captured 46,353 Mexican free-tailed bats. Although just over half of the caught individuals were nonreproductive adult males (53.6%), 826 pregnant, 892 lactating, 10,101 post-lactating, and 4327 nonreproductive adult females were captured. Juveniles comprised 11.5% of captures. Female reproductive phenology was delayed relative to conspecific roosts at lower latitudes, likely due to cooler temperatures. Roost use by reproductive females and juvenile bats demonstrates this site is a maternity roost, with significant ecological and conservation value. To our knowledge, no other industrial scale wind energy facilities exist in such proximity to a heavily used bat roost in North America. Given the susceptibility of Mexican free-tailed bats to wind turbine mortality and the proximity of this roost to a wind energy facility, these data provide a foundation from which differential impacts on demographic groups can be assessed.  相似文献   

8.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

9.
《Acta Oecologica》2007,31(1):119-126
The role of the forest canopy in protecting bats roosting in forest from predators is poorly known. We analysed the effect of canopy closure on emergence time in Barbastella barbastellus in a mountainous area of central Italy. We used radio-tracking to locate roosts and filmed evening emergence. Comparisons were made between roosts in open areas and those in dense forest. Median emergence time and illuminance were correlated. Moreover, from pregnancy to late lactation bats emerged progressively earlier, probably because of the exceptionally high wing loading affecting pregnant bats and the high energy demand of lactation. A significant influence of canopy closure on median emergence time was revealed after adjusting for the effects of light and reproductive state. Bats in open habitat emerged later than those roosting beneath closed canopy. In cluttered habitats, predators relying on vision may find it more difficult to detect and catch bats at light levels which would offer more chances of success when attacking prey in open habitats. Bats in dense forest are less vulnerable to predators and may take advantage of an earlier emergence by prolonging foraging. Although more vulnerable, lactating females roosting at open sites may benefit from warmer roosting conditions. Roosts in dense forest may be preferred under intense predation pressure. Forest management should favour canopy heterogeneity to provide bats with a range of roosting conditions. Our work emphasises the role of a fine-grained spatial scale in the roosting ecology of forest bats.  相似文献   

10.
Adaptations for foraging in the complex airspaces of forest interiors may make bat species in the Asian tropics particularly susceptible to forest loss. However, ecomorphological analysis of Vietnamese bat assemblages challenges the hypothesis that, due to their greater vagility, cave‐roosting bats are less vulnerable to habitat fragmentation than foliage‐roosting species. Of the 13 most highly adapted forest‐interior species in our study, eight were cave‐roosting members of the Rhinolophidae and Hipposideridae and had wing morphologies closely resembling five foliage‐roosting members of the Murininae and Kerivoulinae—species typically thought to have low vagility. Overall, both cave‐roosting and foliage‐roosting bats exhibited a wide range of flight indices and species' wing designs corresponded with preferred foraging habitats, suggesting that foraging strategy may outweigh roost preference as a determinant of bat wing morphology and flight performance. Consequently, where such variation occurs, cave‐roosting bat ensembles are likely to include species with low vagility and similar sensitivity to habitat fragmentation. This could have important conservation implications as Asian karst formations support high cave densities and important bat diversity yet increasingly represent forest refugia in anthropogenic landscapes. We, therefore, advocate greater consideration of species vagility in determining conservation priorities for the region's bat fauna.  相似文献   

11.
Life history of Fraser's dolphin, a little known delphinid species, was examined based on 108 specimens from a school captured by the driving fishing method in Japan. The sex ratio was approximately 1:1, and mature dolphins of both sexes formed the bulk of the school. The oldest animals were two males and a female of 17.5 yr. Age and body length at sexual maturity were estimated at 7–10 yr and 220–230 cm in males and 5–8 yr and 210–220 cm in females. Mature males were larger in body length than mature females and showed apparent secondary sexual features: deepening of the tail stock and widening and darkening of the lateral dark stripe. The annual ovulation rate was 0.49. The estimated neonatal length (110 cm) predicts a gestation period of about 12.5 mo and calving peaks in spring and probably also in fall. The calving interval was estimated to be about 2 yr. These life history parameters are similar to those of the striped and pantropical spotted dolphins, except for longevity. The reproductive rate of this species may be lower than that of other pelagic delphinids, if the observed shorter longevity is real.  相似文献   

12.
The microclimate at Thermocline Cave (lat, 30° 45′S, long, 149° 43′E) was investigated by measuring air temperature and relative humidity at five stations on 18 occasions from September 1971 to December, 1973. The activity, body weight and roosting sites of the bat Miniopterus schreibersii blepotis in the cave were recorded on each visit. Relative humidity in the cave was generally high and paralleled temperature. The cave exhibited a range of temperatures from 9 to 19.5°C but bats selected roosting sites only in a part of this range. During the autumn when the bats arrived and were feeding, their body weights were low, and they roosted in a domed area at the rear of the cave with a temperature of 19.5°C. As they became less active and body weight increased they moved to cooler parts (9.5-11°C) towards the front of the cave and underwent periods of torpor, in one case lasting for at least 12 days. From July to September body weight decreased. The bats became more active in September and most had left the cave by October. It appears that M.s. blepotis can detect temperature differences of 1°C. They used this ability to select cold areas with stable high humidity in Thermocline Cave to under go periods of winter torpor.  相似文献   

13.
We studied the deposition of pupae of the winged bat fly Trichobius sp. (caecus group; Diptera), an ectoparasite of Natalus stramineus (Chiroptera, Natalidae), in a natural cave in Tamaulipas, Mexico. For the first time, we show a strong spatial segregation of populations of a streblid bat fly at different stages of development. Using molecular techniques we were able to match developmental stages to adults. Only 5 pupae were present in the main bat roosts. The overwhelming majority occurred exclusively in the bat flyway passages at a considerable distance from roosting bats. Pupal density corresponded positively with the average flight height of bats in the cave passage. Taken together, observations suggest that these ectoparasites must actively seek out their hosts by moving onto passing or roosting bats. The scarceness of pupae in the main roost may be dictated by environmental constraints for their development. The estimated population of viable pupae far exceeds the population of imagoes on the bats, and predation on adults by spiders is common.  相似文献   

14.
During roosting in summer, reproductive female bats appear to use torpor less frequently and at higher body temperatures (T b) than male bats, ostensibly to maximise offspring growth. To test whether field observations result from differences in thermal physiology or behavioural thermoregulation during roosting, we measured the thermoregulatory response and energetics of captive pregnant and lactating female and male long-eared bats (Nyctophilus geoffroyi 8.9 g and N. gouldi 11.5 g) during overnight exposure to a constant ambient temperature (T a) of 15°C. Bats were captured 1–1.5 h after sunset and measurements began at 21:22±0:36 h. All N. geoffroyi entered torpor commencing at 23:47±01:01 h. For N. gouldi, 10/10 males, 9/10 pregnant females and 7/8 lactating females entered torpor commencing at 01:10±01:40 h. The minimum T b of torpid bats was 15.6±1.1°C and torpid metabolic rate (TMR) was reduced to 0.05±0.02 ml O2 g−1 h−1. Sex or reproductive condition of either species did not affect the timing of entry into torpor (F=1.5, df=2, 19, P=0.24), minimum TMR (F=0.21, df=4, 40, P=0.93) or minimum T b (F=0.76, df=5, 41, P=0.58). Moreover, sex or reproductive condition did not affect the allometric relationship between minimum resting metabolic rate and body mass (F=1.1, df=4, 37, P=0.37). Our study shows that under identical thermal conditions, thermal physiology of pregnant and lactating female and male bats are indistinguishable. This suggests that the observed reluctance by reproductive females to enter torpor in the field is predominantly because of ecological rather than physiological differences, which reflect the fact that females roost gregariously whereas male bats typically roost solitarily.  相似文献   

15.
A long delay in post-implantation embryonic development was detected in Fischer's pygmy fruit bats (palaeotropical fruit bats of the suborder Megachiroptera), the first time such a delay has been demonstrated outside the bat suborder Microchiroptera. Samples of bats were obtained from the Philippines over 5 years, and reproductive tracts were preserved and examined using standard histological techniques. Most parous female pygmy bats were impregnated in June, within a few weeks of parturition, and the embryos underwent superficial implantation at the anterior end of the uterus contralateral to the previously gravid uterus. Shortly thereafter, the rate of embryonic growth slowed tremendously for up to 8 months. During the period of delay, the mean length of the embryoblast increased only from 280 microns to 520 microns. In March of the following year, the developmental rate increased, and the embryos completed development in the next 3 months. The 8-month delay gives these bats a gestation period of 11.5 months, the longest known in bats. Most nulliparous females become pregnant at an age of 3-5 months, and their embryos entered a similar delay that terminated in March or April, after 2-6 months of delay. Males showed signs of fertility throughout the entire year, but testis volume was highest during May, June and July, at about the time when most females become receptive.  相似文献   

16.
Unlike many othe r mammals, bats in temperate regions employ short bouts of torpor throughout the reproductive period to maintain a positive energy balance. In addition to decreasing energy expenditure during the day, they typically alter foraging patterns as well. It is well known that various environmental conditions influence both torpor and foraging patterns, but studies of these factors often have focussed on one element in isolation thus it is not known how the two behaviours are collectively influencing temperate bats. The objective of our study was to assess how reproductive condition and environmental factors concurrently affect energy balance in female big brown bats (Eptesicus fuscus). We equipped pregnant and lactating bats in southwest Saskatchewan, Canada with temperature-sensitive radio-transmitters. While transmitters were active, skin temperature data were collected and foraging patterns were determined using triangulation. Of the various environmental and physiological parameters used to model torpor characteristics, roost type was the most important factor. Bats roosting in trees used deeper and longer torpor bouts than those roosting in buildings. Lactating bats had a tendency to forage for longer durations than pregnant bats, and often made more foraging trips. When taken together, we found that foraging duration and torpor duration were not directly related during pregnancy, but exhibited an inverse relationship during lactation. This provides support for the hypothesis that there are physiological trade-offs for reproductive bats and suggests that how bats compensate is not entirely predictable based on current environmental conditions.  相似文献   

17.
Investigating factors that promote group living in animals can help us to understand the evolution of sociality. The dark woolly bat, Kerivoula furva, forms small groups and uses furled leaves of banana (Musa formosana) as day roosts in subtropical Taiwan. In this study, we reported on the roosting ecology and social organization of K. furva. We examined whether ecological constraints, demographic traits, and physiological demands contributed to its sociality. From July 2014 to May 2016, we investigated the daily roost occupation rate, group size, and composition of each roost, and we calculated association indices in pairs. The results showed K. furva lived in groups throughout the year, and the average daily roost occupation rate was approximately 6.7% of all furled leaves that were suitable for roosting. The size of roosting groups of adults in each roost varied between 1 and 13; group size was independent of air temperature during both reproductive and nonreproductive seasons. The vast majority of roosting groups was composed of females and their young, and males frequently roosted solitarily or in a bachelor group. Forty adult bats were captured ≥4 times during the study period. The association indices in pairs of these 40 bats ranged between 0 and 0.83 with an average of 0.05 ± 0.14 (n = 780). The average association index of female–female pairs was significantly higher than that of female–male pairs and male–male pairs. Based on the association indices, the 40 bats were divided into seven social groups with social group sizes that varied between 2 and 10. Despite changing day roosts frequently, the relatively stable social bonds were maintained year‐round. Our results that groups of K. furva were formed by active aggregation of multiple generation members supported the demographic traits hypothesis.  相似文献   

18.
扁颅蝠与褐扁颅蝠的集群结构   总被引:4,自引:0,他引:4  
2001—2002年在广西宁明县和龙州县利用直接观察、捕捉测量(共捕到197群蝙蝠,全捕180群)和标记重捕法(标记了31群的101只扁颅蝠,重捕到36只)比较研究了扁颅蝠(tylonycteris pachypusa)与褐扁颅蝠(T.robustula)的集群结构。结果发现:扁颅蝠与褐扁颅蝠主要栖宿在刺竹(Bambusa stenostachya)的竹筒内,通过竹筒上的裂缝进出。扁颅蝠栖宿的竹筒长平均为27.7cm,外围直径平均为23.6cm;褐扁颅蝠的分别为28.3cm和23.8cm。扁颅蝠栖宿群大小为1—24只,褐扁颅蝠栖宿群大小为1—13只;2种蝙蝠的栖宿群中皆为独居所占比例最大(扁颅蝠为22.30%,褐扁颅蝠为40.63%),2只所占比例次之(分别为14.87%和18.75%),其它大小类型呈不规则变化。扁颅蝠栖宿群的性别组成,以雌雄混居最常见(占54.72%),其次为独居雄性(占20.95%),而褐扁颅蝠栖宿群雌雄混居群与独居雄性所占比例相当(均为40.63%)。2种蝙蝠的雄性趋向于独居,而雌性趋向于群居。扁颅蝠与褐扁颅蝠可以栖宿在同一片竹林内,并且可以在不同时间轮流使用同一个栖宿竹筒,但2种蝙蝠从未共栖于同一个竹筒内。另外,标记重捕扁颅蝠发现:扁颅蝠经常变换栖宿竹筒(栖宿竹筒不固定);同时栖宿群之间经常发生个体交换[动物学报50(3):326—333.2004]。  相似文献   

19.
Daily torpor can provide significant energy and water savings in bats during cold ambient temperatures and food scarcity. However, it may reduce rates of foetal and juvenile development. Therefore, reproductive females should optimize development by minimizing times in torpor. To test this hypothesis, the use of torpor by female and male free-ranging Daubenton’s bats (Myotis daubentonii) during reproduction (gestation, lactation, and post-lactation period) was investigated in 1998 and 1999. Temperature-sensitive radio transmitters were attached to the bats to measure skin temperature. Simultaneously, ambient temperature was recorded. While both sexes became torpid during daytime, male bats used daily torpor (>6°C below individual active temperature) significantly more often during reproductive period (mean: 78.4 % of day time in May and 43 % in June) than females. Female bats went into daily torpor, particularly in late summer when juveniles were weaned (mean: 66.6 % of daytime). Lowest skin temperatures occurred in a female bat with 21.0°C during post-lactation. Skin temperatures of male bats fluctuated from 16.8°C in torpor to 37.2°C during times of activity. There was a significant effect of reproductive period on skin temperature in females whereas mean ambient temperature had no significant effect. However, mean ambient temperature affected mean skin temperatures in males. Our findings indicate that female Daubenton’s bats adopt their thermoregulatory behaviour in particular to optimize the juvenile development.  相似文献   

20.
Short-tailed bats (Mystacina sp.) were rediscovered in Nothofagus dominant rainforest in the Eglinton Valley in February 1997, representing the first records of these bats in Fiordland since 1871. Breeding females, adult males and juveniles were captured. This paper presents preliminary observations of taxonomy, echolocation calls, population size, habitat use, activity patterns, home range size, movements, roosting, and singing behaviour. Compared to lesser short- tailed bats (M. tuberculata) on Codfish and Little Barrier Islands, the Fiordland bats were heavier, had larger wings and smaller ears, and were sexually dimorphic. The Mystacina echolocation calls were of low intensity (quiet), making them difficult to detect. Call durations in free-flying bats were only 1.0-2.9 ms long. In a comparative trial the majority of calls that were detected at 25 kHz using the Batbox III bat detector were not recorded at 40 kHz, indicating that there was little overlap with the calls of long-tailed bats (Chalinolobus tuberculatus). In February, roosting groups numbered from 107 to 279 individuals and the bats ranged over 130 km(2) of the valley. Bats began emerging c. 20 minutes after sunset and were active at the roost sites throughout the night. Radio-tagged bats were active for an average of 372 minutes at a time. All roosts were in large diameter (67-146 cm dbh) red beech (N. fusca) trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号