首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutagenic activation of benzo[a]pyrene (BaP) after exposure to aorta smooth muscle cells of different origin was examined. Three test systems with different genetic endpoints--sister-chromatid exchange (SCE), gene mutation at the hypoxanthine guanine phosphoribosyl transferase (HGPRT) locus and unscheduled DNA synthesis (UDS)--were used. Treatment of rat and rabbit aorta smooth muscle cells with BaP (1-6 micrograms/ml) resulted in a significant increase of SCEs, HGPRT mutations and UDS. So smooth muscle cells are capable of converting BaP to metabolites with a DNA-damaging action. In order to investigate the relation between the formation of mutagenic BaP metabolites and the susceptibility to atherosclerosis we compared the mutagenic potential of BaP using aorta smooth muscle cells of different species (rat, rabbit) and locations (thoracic and abdominal aorta). Rabbits and abdominal aortas are more susceptible to atherosclerosis than rats and thoracic aortas. The SCE, HGPRT and UDS assays revealed that smooth muscle cells of different origin possessed the same metabolic potential towards BaP. There was no correlation between the mutagenic potency of BaP metabolites and the susceptibility to atherosclerosis. As smooth muscle cells have a low metabolic capacity towards BaP, probably other factors in addition to the metabolic capacity of smooth muscle cells are responsible for species and tissue differences in susceptibility to atherosclerosis.  相似文献   

2.
Smooth muscle cell phenotypes in atherosclerotic lesions   总被引:6,自引:0,他引:6  
Recently, there has been a dramatic change in the way we think about the role of vascular smooth muscle cells in atherosclerosis, and it is now generally accepted that a dearth of vascular smooth muscle cells in an atherosclerotic plaque is a detrimental feature of the disease. Indeed, it is now recognized that the phenotypes of vascular smooth muscle cells within a plaque dictate its features, progression and stability. Therefore an understanding of the processes that generate and regulate vascular smooth muscle cell heterogeneity are of critical importance for future therapeutic advancement in the treatment of atherosclerosis.  相似文献   

3.
The development of atherosclerosis is a multifactorial process in which both elevated plasma cholesterol levels and proliferation of smooth muscle cells play a central role. Numerous studies have suggested the involvement of oxidative processes in the pathogenesis of atherosclerosis and especially of oxidized low density lipoprotein. Some epidemiological studies have shown an association between high dietary intake and high serum concentrations of vitamin E and lower rates of ischemic heart disease. Cell culture studies have shown that alpha-tocopherol brings about inhibition of smooth muscle cell proliferation. This takes place via inhibition of protein kinase C activity. alpha-Tocopherol also inhibits low density lipoprotein induced smooth muscle cell proliferation and protein kinase C activity. The following animal studies showed that vitamin E protects development of cholesterol induced atherosclerosis by inhibiting protein kinase C activity in smooth muscle cells in vivo. Elevated plasma levels of homocysteine have been identified as an important and independent risk factor for cerebral, coronary and peripheral atherosclerosis. However the mechanisms by which homocysteine promotes atherosclerotic plaque formation are not clearly defined. Earlier reports have been suggested that homocysteine exert its effect via H2O2 produced during its metabolism. To evaluate the contribution of homocysteine in the pathogenesis of vascular diseases, we examined whether the homocysteine effect on vascular smooth muscle cell growth is mediated by H2O2. We show that homocysteine induces DNA synthesis and proliferation of vascular smooth muscle cells in the presence of peroxide scavenging enzyme, catalase. Our data suggest that homocysteine induces smooth muscle cell growth through the activation of an H2O2 independent pathway and accelerate the progression of atherosclerosis. The results indicate a cellular mechanism for the atherogenicity of cholesterol or homocysteine and protective role of vitamin E in the development of atherosclerosis.  相似文献   

4.
Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation. [BMB Reports 2014; 47(1): 1-7]  相似文献   

5.

Background

Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII) induced atherosclerosis and abdominal aortic aneurysms (AAAs). However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs.

Methodology/Principal Findings

AT1a receptor floxed mice were developed in an LDL receptor −/− background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min). Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs.

Conclusions

Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies.  相似文献   

6.
Diabetes causes accelerated atherosclerosis and subsequent cardiovascular disease through mechanisms that are poorly understood. We have previously shown, using a porcine model of diabetes-accelerated atherosclerosis, that diabetes leads to an increased accumulation and proliferation of arterial smooth muscle cells in atherosclerotic lesions and that this is associated with elevated levels of plasma triglycerides. We therefore used the same model to investigate the mechanism whereby diabetes may stimulate smooth muscle cell proliferation. We show that lesions from diabetic pigs fed a cholesterol-rich diet contain abundant insulin-like growth factor-I (IGF-I), in contrast to lesions from non-diabetic pigs. Furthermore, two fatty acids common in triglycerides, oleate and linoleate, enhance the growth-promoting effects of IGF-I in smooth muscle cells isolated from these animals. These fatty acids accumulate predominantly in the membrane phospholipid pool; oleate accumulates preferentially in phosphatidylcholine and phosphatidylethanolamine, whereas linoleate is found mainly in phosphatidylethanolamine. The growth-promoting effects of oleate and linoleate depend on phospholipid hydrolysis by phospholipase D and subsequent generation of diacylglycerol. Thus, concurrent increases in levels of IGF-I and triglyceride-derived oleate and linoleate in lesions may contribute to accumulation and proliferation of smooth muscle cells and lesion progression in diabetes-accelerated atherosclerosis.  相似文献   

7.
动脉粥样硬化是一种病因复杂的血管壁慢性炎症性疾病。动脉粥样硬化及其相关并发症已成为人类死亡的主要原因,然而,其病因和发病机制尚未完全阐明,治疗效果还不满意。目前已经证实,动脉内皮细胞功能发生障碍是动脉粥样硬化的始动过程,内皮细胞功能失调和内皮细胞丢失是动脉粥样硬化症的主要特点;而血管平滑肌细胞的异常增生在动脉粥样硬化的发生发展中也扮演着重要角色。因此,探索有效措施促进有益的内皮细胞再生并抑制平滑肌细胞增生是血管损伤防治的关键。近年来有研究发现,体外输注的间充质干细胞能够向受损部位募集,并进一步分化为内皮细胞,修复损伤血管。然而,也有研究显示体外输注的间充质干细胞还可以分化为血管平滑肌细胞进而在血管局部增生,参与血管再狭窄的发生。文中综述了间充质干细胞输注对动脉粥样硬化发展的最新研究进展,希望为后续开展的用间充质干细胞治疗动脉粥样硬化的研究提供一定的参考。  相似文献   

8.
目的探讨oxLDL参与动脉粥样硬化发生的可能机制。方法培养人血管内皮细胞及平滑肌细胞,以50μg/L oxLDL刺激24、48h后,收获细胞用于后续实验:①免疫组化染色检测DNA加合物εdA水平;②免疫组化方法检测细胞内4-HNE修饰蛋白;③western blot法检测细胞内4-HNE修饰蛋白水平。结果oxLDL刺激EC及SMC中DNA加合物εdA水平及4-HNE修饰蛋白水平均较未刺激细胞组明显升高。结果 oxLDL诱导的氧化应激、脂质过氧化反应及其继发的DNA损伤可能为oxLDL参与动脉粥样硬化发生的重要机制。  相似文献   

9.
同源异型盒基因对血管平滑肌细胞的调控作用   总被引:1,自引:0,他引:1  
同源异型盒基因是一类对生物体的生长、发育和分化从时间和空间上进行协调的调控基因。构成血管中膜的血管平滑肌细胞表型具有极大的可塑性。在一些病理性血管重构时,血管平滑肌细胞可发生表型调变,从分化型调变为去分化型,具备增殖和迁移能力。在此过程中,多种同源异型盒基因的表达发挥了重要的调控作用。现就同源异型盒基因与血管平滑肌细胞的表型调变、增殖和迁移的关系等方面的研究进展作一综述。  相似文献   

10.
血管平滑肌细胞表型调节机制的研究进展   总被引:13,自引:0,他引:13  
血管平滑肌细胞(VSMC)的增殖和迁移是动脉粥样硬化斑块形成、高血压和血管再狭窄的共同病理特征,而VSMC表型转化是VSMC增殖和迁移的基础,研究VSMC表型调节的分子机制,对上述疾病的防治具有重要意义。本文对VSMC表型转化的影响因素、信号转导途径和转录因子的研究进展作一综述。  相似文献   

11.
Urotensin II, through its interaction with its UT receptor, is a potent vasoactive peptide in humans and in several animal models. Recent studies have demonstrated elevated plasma U-II levels in patients with atherosclerosis and coronary artery disease. U-II is expressed in endothelial cells, smooth muscle cells and infiltrating macrophages of atherosclerotic human coronary arteries. UT receptor expression is up-regulated by inflammatory stimuli. Activation of UT receptor by U-II stimulates endothelial and smooth muscle cell proliferation and monocytes chemotaxis. Therefore, in addition to its primary vasoactive effect, these observations suggest a role of U-II and UT receptor in the initiation and/or progression of atherosclerosis.  相似文献   

12.
Vascular smooth muscle cell is a major cell component involved in the process of atherosclerosis. In the present study, we investigated the effects of platelet-derived growth factor (PDGF)-BB dimer on the expression of macrophage-colony stimulating factor (M-CSF) in vascular smooth muscle cells isolated from human umbilical artery. On Northern blot analysis of total RNAs isolated from smooth muscle cells, with human cDNA for M-CSF, a marked dose-dependent reduction of mRNA level was found in PDGF-BB-treated smooth muscle cells. Cellular production of M-CSF was estimated by immunoblot analysis of cell lysate with specific polyclonal antibody against recombinant human M-CSF. A concentration of 10 ng/ml PDGF-BB significantly reduced M-CSF mass in smooth muscle cells compared with that in the absence of PDGF-BB. These results suggest that PDGF-BB plays an important role in the cellular metabolism of vascular wall by regulating the rate of M-CSF production in vascular smooth muscle cells.  相似文献   

13.
Hassan GS  Douglas SA  Ohlstein EH  Giaid A 《Peptides》2005,26(12):2464-2472
The vasoactive peptide urotensin-II (U-II) is best known for its ability to regulate peripheral vascular and cardiac contractile function in vivo, and recent in vitro studies have suggested a role for the peptide in the control of vascular remodeling by inducing smooth muscle proliferation and fibroblast-mediated collagen deposition. Therefore, U-II may play a role in the etiology of atherosclerosis. In the present study we sought to determine the expression of U-II in coronary arteries from patients with coronary atherosclerosis and from normal control subjects, using immunohistochemistry and in situ hybridization. In normal coronary arteries, there was little expression of U-II in all types of cells. In contrast, in patients with coronary atherosclerosis, endothelial expression of U-II was significantly increased in all diseased segments (P < 0.05). Greater expression of U-II was noted in endothelial cells of lesions with subendothelial inflammation or fibrofatty lesion compared with that of endothelial cells underlined by dense fibrosis or minimal intimal thickening. Myointimal cells and foam cells also expressed U-II. In most diseased segments, medial smooth muscle cells exhibited moderate expression of U-II. These findings demonstrate upregulation of U-II in endothelial, myointimal and medial smooth muscle cells of atherosclerotic human coronary arteries, and suggest a possible role for U-II in the pathogenesis of coronary atherosclerosis.  相似文献   

14.
Intimal hyperplasia due to smooth muscle cell proliferation and migration has been reported to be responsible for the pathogenesis of atherosclerosis and restenosis, manifested following balloon angioplasty. In this study, we employed the balloon angioplasty model to study telomere length regulation in proliferating vascular smooth muscle cells. Our results showed that balloon angioplasty in iliac arteries resulted in intimal hyperplasia due to proliferation of the smooth muscle cells and small size telomeric restrictional fragments were evident in injured arteries.  相似文献   

15.
Summary Smooth muscle cells were isolated enzymatically from adult human arteries, grown in primary culture in medium containing 10% whole blood serum, and studied by transmission electron microscopy and [3H]thymidine autoradiography. In the intact arterial wall and directly after isolation, each smooth muscle cell had a nucleus with a wide peripheral zone of condensed chromatin and a cytoplasm dominated by myofilament bundles with associated dense bodies. After 1–2 days of culture, the cells had attached to the substrate and started to spread out. At the same time, a characteristic fine-structural modification took place. It included nuclear enlargement, dispersion of the chromatin and formation of large nucleoli. Moreover, myofilament bundles disappeared and an extensive rough endoplasmic reticulum and a large Golgi complex were organized in the cytoplasm. This morphological transformation of the cells was completed in 3–4 days. It was accompanied by initiation of DNA replication and mitosis.The observations demonstrate that adult human arterial smooth muscle cells, when cultivated in vitro, pass through a phenotypic modulation of the same type as arterial smooth muscle cells from experimental animals. This modulation gives the cells morphological and functional properties resembling those of the modified smooth muscle cells found in fibroproliferative lesions of atherosclerosis. Further studies of the regulation of smooth muscle phenotype and growth may provide important clues for a better understanding of the pathogenesis of atherosclerosis.  相似文献   

16.
《Life sciences》1997,61(19):PL269-PL274
Arterial smooth muscle cell migration from the media to the intima is a crucial process in the pathogenesis of atherosclerosis. Platelet-derived growth factor (PDGF) has been proposed to play a key role in the development of advanced atherosclerotic lesions by stimulating the migration and proliferation of vascular smooth muscle cells. Polyunsaturated fatty acids (PUFA) of the ω-3 series, extracted from fish oil has been shown to have beneficial effects on atherosclerosis. In this study, we evaluated the effects of ω-3 PUFA on the migration of human aortic smooth muscle cell (hASMC) in vitro. The migration assay was performed according to the Capsoni's method using transwell culture plates. PDGF, fibrinogen or 10%FCS significantly stimulated hASMC migration, however, ω-3 PUFA significantly inhibited PDGF-induced migration of hASMC. These results suggest that the inhibitory effect of ω-3 PUFA on cell migration may be an important aspect by which ω-3 PUFA exerts its antiatherosclerotic influence.  相似文献   

17.
Postprandial lipidemia, characterized by high plasma triglyceride-rich lipoprotein remnants, is associated with atherosclerosis. It has also been known that proliferation of vascular smooth muscle cells is crucial for the development of atherosclerosis. In this study, we investigated the direct effect of remnant lipoprotein particles, which consist of chylomicron remnants and very low density lipoprotein remnants, on vascular smooth muscle cell proliferation. Blood was collected from six patients with postprandial lipidemia two hours after their usual meal. Remnant lipoprotein particles were isolated from plasma by immuno-affinity chromatography containing two monoclonal antibodies, anti-apo A-I (H-12) and anti-apo B-100 (JI-H). Remnant lipoprotein particles, as well as betaVLDL, significantly stimulated the proliferation of porcine coronary artery smooth muscle cells in a concentration-dependent manner, whereas very low density lipoprotein (d < 1.006) was virtually ineffective. These observations are consistent with recent reports that triglyceride-rich lipoprotein remnants, which are rich in apo E as well, are atherogenic.  相似文献   

18.
膜片钳技术在动脉粥样硬化研究中的应用   总被引:1,自引:0,他引:1  
膜片钳技术是一种先进的电生理技术,在生命科学研究中已得到了广泛的应用.最近几年已把它运用于研究动脉粥样硬化血管平滑肌细胞离子通道电生理特性的改变.研究发现血管平滑肌细胞的凋亡与K+通道活动增加有关,在动脉粥样硬化发生与发展过程中大电导型钙激活钾通道起着重要的功能作用.某些药物影响动脉粥样硬化血管平滑肌细胞离子通道而发挥作用.膜片钳技术给动脉粥样硬化发病机理研究带来了新的亮点.  相似文献   

19.
Methods for the stepwise isolation of endothelial cells and smooth muscle cells from individual canine coronary arteries are described. Both cell types can be isolated in pure culture with high yields. Dogs are a common species used in the study of atherosclerosis and coronary artery disease. Capacity to isolate endothelial cells and smooth muscle cells from individual canine coronary arteries should prove useful in the study of coronary artery disease.  相似文献   

20.
Long noncoding RNAs (lncRNAs) play important roles in endothelium development. A lncRNA, LEF1-AS1, is recently emerging as a potent mediator of the proliferation and migration of a number of cells, including smooth muscle cells. However, the effects of LEF1-AS1 in atherosclerosis remains largely unknown. Specimens from patients with coronary artery atherosclerosis were collected. The quantitative real-time polymerase chain reaction was used to analyze levels of LEF1-AS1 and microRNA-544a (miR-544a). Western blot analysis was used to assess PTEN, P-Akt, and T-Akt protein expression. Proliferation, migration, and invasion of cells were analyzed by cell counting kit-8 assay, scratch wound assay, and transwell assay, respectively. The interaction between LEF1-AS1, miR-544a, and PTEN was probed using bioinformatical analysis and dual-luciferase assay. In plasma and tissue of patients with coronary artery atherosclerosis, LEF1-AS1 was upregulated and miR-544a was downregulated. A negative correlation was found between LEF1-AS1 and miR-544a. miR-544a overexpression reversed the inhibition of LEF1-AS1 in smooth muscle cell proliferation and invasion, which were mediated through the PTEN pathway. LEF1-AS1 regulates smooth muscle cell proliferation and migration through the miR-544a/PTEN axis, indicating that LEF1-AS1 may be a potential therapeutic target in atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号