共查询到20条相似文献,搜索用时 0 毫秒
1.
Niels Laurens Stuart R. W. Bellamy August F. Harms Yana S. Kovacheva Stephen E. Halford Gijs J. L. Wuite 《Nucleic acids research》2009,37(16):5454-5464
Many proteins that interact with DNA perform or enhance their specific functions by binding simultaneously to multiple target sites, thereby inducing a loop in the DNA. The dynamics and energies involved in this loop formation influence the reaction mechanism. Tethered particle motion has proven a powerful technique to study in real time protein-induced DNA looping dynamics while minimally perturbing the DNA–protein interactions. In addition, it permits many single-molecule experiments to be performed in parallel. Using as a model system the tetrameric Type II restriction enzyme SfiI, that binds two copies of its recognition site, we show here that we can determine the DNA–protein association and dissociation steps as well as the actual process of protein-induced loop capture and release on a single DNA molecule. The result of these experiments is a quantitative reaction scheme for DNA looping by SfiI that is rigorously compared to detailed biochemical studies of SfiI looping dynamics. We also present novel methods for data analysis and compare and discuss these with existing methods. The general applicability of the introduced techniques will further enhance tethered particle motion as a tool to follow DNA–protein dynamics in real time. 相似文献
2.
Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology. 相似文献
3.
J M Schurr 《Biopolymers》1985,24(7):1233-1246
The persistence length and effective long-range bending rigidity are derived for a discrete model of an anisotropically bending filament and shown to be independent of the torsional rigidity. The twisting persistence length is found to be independent of the anisotropic bending rigidity. Other statistical properties are briefly discussed, including the dependence of tangent vector projections on contour length. The dependence of a tensor contraction on contour length is derived for an isotropically bending filament with no equilibrium twist. 相似文献
4.
The FokI restriction endonuclease recognizes an asymmetric DNA sequence and cuts both strands at fixed positions upstream of the site. The sequence is contacted by a single monomer of the protein, but the monomer has only one catalytic centre and forms a dimer to cut both strands. FokI is also known to cleave DNA with two copies of its site more rapidly than DNA with one copy. To discover how FokI acts at a single site and how it acts at two sites, its reactions were examined on a series of plasmids with either one recognition site or with two sites separated by varied distances, sometimes in the presence of a DNA-binding defective mutant of FokI. These experiments showed that, to cleave DNA with one site, the monomer bound to that site associates via a weak protein–protein interaction with a second monomer that remains detached from the recognition sequence. Nevertheless, the second monomer catalyses phosphodiester bond hydrolysis at the same rate as the DNA-bound monomer. On DNA with two sites, two monomers of FokI interact strongly, as a result of being tethered to the same molecule of DNA, and sequester the intervening DNA in a loop. 相似文献
5.
Genetic events often require proteins to be activated by interacting with two DNA sites, trapping the intervening DNA in a loop. While much is known about looping equilibria, only a few studies have examined DNA-looping dynamics experimentally. The restriction enzymes that cut DNA after interacting with two recognition sites, such as FokI, can be used to exemplify looping reactions. The reaction pathway for FokI on a supercoiled DNA with two sites was dissected by fast kinetics to reveal, in turn: the initial binding of a protein monomer to each site; the protein–protein association to form the dimer, trapping the loop; the subsequent phosphodiester hydrolysis step. The DNA motion that juxtaposes the sites ought on the basis of Brownian dynamics to take ~2 ms, but loop capture by FokI took 230 ms. Hence, DNA looping by FokI is rate limited by protein association rather than DNA dynamics. The FokI endonuclease also illustrated activation by looping: it cut looped DNA 400 times faster than unlooped DNA. 相似文献
6.
7.
Rapidly relaxing components in the decay of the transient electric dichroism of DNA restriction fragments were reported by Diekmann et al. [(1982) Biophys. Chem. 15, 263-270] and P?rschke et al. [(1987) Biopolymers 26, 1971-1974]. These are analyzed using a new normal mode theory for weakly bending rods and assigned to bending. The longest bending relaxation times for fragments with 95-250 base pairs coincide with the theoretical curve calculated for a dynamic bending rigidity corresponding to a dynamic persistence length Pd = 2100 A. Analysis of the relative amplitudes of fast and slow components following weak orienting pulses is also consistent with a rather large dynamic persistence length. The enhancement of the relative amplitude of the fast component in large electric fields is attributed to steady-state bending of initially perpendicular DNAs by the field. Several reasons are proposed why the dynamic bending rigidity is 4 times larger than the apparent static bending rigidity inferred from equilibrium persistence length measurements on the same fragments. 相似文献
8.
The binding of many proteins to DNA is profoundly affected by DNA bending, twisting, and supercoiling. When protein binding alters DNA conformation, interaction between inherent and induced DNA conformation can affect protein binding affinity and specificity. Integration host factor (IHF), a sequence-specific, DNA-binding protein of Escherichia coli, strongly bends the DNA upon binding. To assess the influence of inherent DNA bending on IHF binding, we took advantage of the high degree of natural static curvature associated with an IHF site on a 163-bp minicircle and measured the binding affinity of IHF for its recognition site contained on this DNA in both circular and linear form. IHF showed a higher affinity for the circular form of the DNA when compared to the linear form. In addition, the presence of IHF during DNA cyclization changed the topology of cyclization products and their ability to bind IHF, consistent with IHF untwisting DNA. These results show that inherent DNA conformation anisotropy is an important determinant of IHF binding affinity and suggests a mechanism for modulation of IHF activity by local DNA conformation. 相似文献
9.
The Escherichia coli integration host factor (IHF) protein is required for site-specific recombination of bacteriophage lambda DNA. Previously, we had shown that alternative modules of static DNA curvature could partially replace IHF in recombination. Now we use regions of single-stranded DNA as a flexible tether to address whether the function of IHF in recombination is simply to reduce persistence length. Although we find that these modules clearly enhance recombination in the absence of IHF, they are not perfect replacements. In addition, evidence is presented that the efficacy of a flexibility swap is specific to a particular IHF site. This may indicate that additional functions beyond simple deformation of DNA are required of IHF. During the course of these experiments we discovered that these flexible sequences are still specific sites for IHF binding and function. 相似文献
10.
11.
(+)-CC -1065 is biologically potent DNA-reactive antitumor antibiotic produced by Streptomyces zelensis. This antibiotic covalently modifies DNA by alkylation of N-3 of a adenine in the minor groove. As a Structural consequence of covalent modification of DNA, the helix axis id bent into the minor groove. The drug-induced bending of DNA has similarities to intrinsic. A-tract bending and the 3′ adenine of A-tracts shows a unique reactivity to alkylation by (+) -CC-1065. Upon covalent modification of A-tracts, the magnitude of bending is increased and helix is stiffened. Using high-field NMR, hydroxyl-radical footprinting and gel electrophoresis, the molecular basis for the high reactivity of the bonding sequence 5′ - AGTTA* (an asterisk indicates the covalent modification site) to (+)-CC-1065 has been shown to involve the inherent conformational flexibility of this sequence. Furthermore, these studies also demonstrate that after alkylation the drug-induced bending is focused over the TT region. By analogy with the junction bend model for A-tracts, a ‘truncated junction bend model’ is proposed for this structure. Last, the application of (+)-CC-1065 entrapped/induced bending of DNA as a probe for the Sp1-induced bending of the 21-base-pair repeat an Mu transpose bending of the att L3 sequence is described. 相似文献
12.
13.
M D Frank-Kamenetskii A V Lukashin V V Anshelevich A V Vologodskii 《Journal of biomolecular structure & dynamics》1985,2(5):1005-1012
We have calculated the variance of equilibrium distribution of a circular wormlike polymer chain over the writhing number, [Wr)2), as a function of the number of Kuhn statistical segments, n. For large n these data splice well with our earlier results obtained for a circular freely jointed polymer chain. Assuming that [delta Lk)2) = [delta Tw)2) we have compared our results with experimental data on the chain length dependence of the [delta Lk)2) value recently obtained by Horowitz and Wang for small DNA rings. This comparison has shown an excellent agreement between theory and experiment and yielded a reliable estimate of the torsional and bending rigidity parameters. Namely, the torsional rigidity constant is C = 3.0.10(-19) erg cm, and the bending rigidity as expressed in terms of the DNA persistence length is a = 500 A. The obtained value of C agrees well with earlier estimates by Shore and Baldwin as well as by Horowitz and Wang whereas the a value is in accord with the data of Hagerman. We have found the data of Shore and Baldwin on the chain length dependence of the [delta Lk)2) value to be entirely inconsistent with our theorectical results. 相似文献
14.
15.
16.
Increased bending rigidity of single DNA molecules by H-NS,a temperature and osmolarity sensor 下载免费PDF全文
Histonelike nucleoid structuring protein (H-NS) is an abundant prokaryotic protein participating in nucleoid structure, gene regulation, and silencing. It plays a key role in cell response to changes in temperature and osmolarity. Force-extension measurements of single, twist-relaxed lambda-DNA-H-NS complexes show that these adopt more extended configurations compared to the naked DNA substrates. Crosslinking indicates that H-NS can decorate DNA molecules at one H-NS dimer per 15-20 bp. These results suggest that H-NS polymerizes along DNA, forming a complex of higher bending rigidity. These effects are not observed above 32 degrees C or at high osmolarity, supporting the hypothesis that a direct H-NS-DNA interaction plays a key role in gene silencing. Thus, we propose that H-NS plays a unique structural role, different from that of HU and IHF, and functions as one of the environmental sensors of the cell. 相似文献
17.
Friedrich T Fatemi M Gowhar H Leismann O Jeltsch A 《Biochimica et biophysica acta》2000,1480(1-2):145-159
The M.FokI adenine-N(6) DNA methyltransferase recognizes the asymmetric DNA sequence GGATG/CATCC. It consists of two domains each containing all motifs characteristic for adenine-N(6) DNA methyltransferases. We have studied the specificity of DNA-methylation by both domains using 27 hemimethylated oligonucleotide substrates containing recognition sites which differ in one or two base pairs from GGATG or CATCC. The N-terminal domain of M.FokI interacts very specifically with GGATG-sequences, because only one of the altered sites is modified. In contrast, the C-terminal domain shows lower specificity. It prefers CATCC-sequences but only two of the 12 star sites (i.e. sites that differ in 1 bp from the recognition site) are not accepted and some star sites are modified with rates reduced only 2-3-fold. In addition, GGATGC- and CGATGC-sites are modified which differ at two positions from CATCC. DNA binding experiments show that the N-terminal domain preferentially binds to hemimethylated GGATG/C(m)ATCC sequences whereas the C-terminal domain binds to DNA with higher affinity but without specificity. Protein-protein interaction assays show that both domains of M.FokI are in contact with each other. However, several DNA-binding experiments demonstrate that DNA-binding of both domains is mutually exclusive in full-length M.FokI and both domains do not functionally influence each other. The implications of these results on the molecular evolution of type IIS restriction/modification systems are discussed. 相似文献
18.
DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules 总被引:4,自引:0,他引:4 下载免费PDF全文
Stefanovsky VY Pelletier G Bazett-Jones DP Crane-Robinson C Moss T 《Nucleic acids research》2001,29(15):3241-3247
The so-called upstream binding factor (UBF) is required for the initial step in formation of an RNA polymerase I initiation complex. This function of UBF correlates with its ability to induce the ribosomal enhancesome, a structure which resembles in its mass and DNA content the nucleosome of chromatin. DNA looping in the enhancesome is probably the result of six in-phase bends induced by the HMG boxes of a UBF dimer. Here we show that insertion/deletion mutations in the basic peptide linker lying between the N-terminal dimerisation domain and the first HMG box of Xenopus UBF prevent the DNA looping characteristic of the enhancesome. Using these mutants we demonstrate that (i) the enhancesome structure does not depend on tethering of the entering and exiting DNA duplexes, (ii) UBF monomers induce hemi-enhancesomes, bending the DNA by 175 ± 24° and (iii) two hemi-enhancesomes are precisely phased by UBF dimerisation. We use this and previous data to refine the existing enhancesome model and show that HMG boxes 1 and 2 of UBF lie head-to-head along the DNA. 相似文献
19.
20.
We have carried out molecular dynamics simulation of the lambda OL1 DNA operator on the free and the protein-bound forms. Our results lead us to conclude that the binding of the repressor actually makes the N-7 atom of Gua8' more solvent exposed, thereby enhancing its reactivity to chemical methylation. This increase in solvent accessibility surface area occurs simultaneously with the formation of hydrogen bonds between Lys-4 of the nonconsensus flexible N-terminal arm and Gua6' of the nonconsensus half-site operator DNA. Calculations of protein--DNA interaction energies reveal that among the residues of the arm, Lys-4 contributes the most favorably to the interaction energies. This result is consistent with mutagenesis studies that established that lysine at position 4 is absolutely required for tight binding. We find that the nonconsensus arm and the nonconsensus monomer interacts less favorably with DNA than do their respective counterparts of the consensus monomer. Moreover, the six-residue flexible arm accounts for at least half the total protein--DNA interactions energy. These results are in agreement with previous experimental studies. In accord with the diffuse electron density map observed in crystallographic studies of the nonconsensus flexible arm, we find that our model built for this region is more flexible and exhibits more conformations than its consensus counterpart. The simulation also reveals that DNA bending observed near the outer edge of the operator site is an intrinsic sequence-dependent property. By contrast, the DNA-bending features observed toward the center of the operator are induced by the protein. On the whole, stepwise protein-induced bending is more pronounced in the consensus half-site operator. We also find that the unusually large helical twist (49 degrees ) observed in the protein-bound form near the center of the operator results from the binding of the protein at a base step with some propensity for high twists. 相似文献