首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem.  相似文献   

2.
3.
4.
5.
Cakmak  I.  Erenoglu  B.  Gülüt  K.Y.  Derici  R.  Römheld  V. 《Plant and Soil》1998,202(2):309-315
The effect of varied light intensity (50 – 600 mol m-2 s-1) on the rate of phytosiderophore release was studied under zinc (Zn) deficiency using a bread (Triticum aestivum L. cv. Aroona) and a durum wheat cultivar (Triticum durum Desf. cv. Durati) differing in zinc (Zn) efficiency and under iron (Fe) deficiency using a barley cultivar (Hordeum vulgare L. Europe). Plants were grown under controlled environmental conditions in nutrient solution for 15 days (wheat plants) or 11 days (barley plants). Phytosiderophore release was determined by measuring capacity of root exudates to mobilize copper (Cu) from a Cu-loaded resin.With increasing light intensity visual Zn deficiency symptoms such as whitish-brown lesions on leaf blade developed rapidly and severely in wheat, particularly in the durum cultivar Durati. In wheat plants supplied well with Zn, increases in light intensity from 100 to 600 mol m-2 s-1 did not clearly affect the rate of phytosiderophore release. However, under Zn deficiency increases in light intensity markedly enhanced release of phytosiderophores in Zn-deficient Aroona, but not in Zn-inefficient Durati. When Fe-deficient barley cultivar Europe was grown first at 220 mol m-2 s-1 and then exposed to 600 mol m-2 s-1 for 24 and 48 h, the rate of release of phytosiderophores was enhanced about 4-fold and 7-fold, respectively. Transfer of Fe-deficient plants from 600 to 50 mol m-2 s-1 for 48 h reduced the rate of release of phytosiderophores by a factor of 7. The effect of light on phytosiderophore release was similar regardless of whether the rate of phytosiderophore release was expressed per plant or per unit dry weight of roots.The results demonstrate a particular role of light intensity in phytosiderophore release from roots under both Zn and Fe deficiency. It is suggested that in the studies concerning the role of phytosiderophore release in expression of Zn or Fe efficiency among and within cereals, a special attention should be given to the light conditions.  相似文献   

6.
Experimental evidence suggests that nicotianamine (NA) is involved in the complexation of metal ions in some metal-hyperaccumulating plants. Closely-related nickel (Ni)- and zinc (Zn)-hyperaccumulating species were studied to determine whether a correlation exists between the Ni and Zn concentrations and NA in foliar tissues. A liquid chromatography-mass spectrometry (LC-MS) procedure was developed to quantify the NA and amino acid contents using the derivatizing agent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. A strong correlation emerged between Ni and NA, but not between Zn and NA. Concentrations of NA and L-histidine (His) also increased in response to higher Ni concentrations in the hydroponic solution supplied to a serpentine population of Thlaspi caerulescens. An inversely proportional correlation was found between the iron (Fe) and Ni concentrations in the leaves. Correlations were also found between Zn and asparagine. The results obtained in this study suggest that NA is involved in hyperaccumulation of Ni but not Zn. The inverse proportionality between the Ni and Fe concentrations in the leaf may suggest that Ni and Fe compete for complexation to NA.  相似文献   

7.
Mack AM  Crawford NM 《The Plant cell》2001,13(10):2319-2332
The in vitro DNA binding activity of the Arabidopsis Tag1 transposase (TAG1) was characterized to determine the mechanism of DNA recognition. In addition to terminal inverted repeats, the Tag1 element contains four different subterminal repeats that flank a transcribed region encoding a 729-amino acid protein. A single site-specific DNA binding domain is located near the N terminus of TAG1, between residues 21 and 133. This domain binds specifically to the AAACCC and TGACCC subterminal repeats, found near the 5' and 3' ends of the element, respectively. The ACCC sequence within these repeats is critical for recognition because mutations at positions 3, 5, and 6 abolished binding, yet the first two bases also are important because substitutions at these positions decreased binding by up to 90%. Weak interaction also occurs with the terminal inverted repeats, but no binding was observed to the other two 3' subterminal repeat regions. Sequence analysis of the TAG1 DNA binding domain revealed a C(2)HC zinc finger motif. Tests for metal dependence showed that DNA binding activity was inhibited by divalent metal chelators and greatly enhanced by zinc. Furthermore, mutation of each cysteine residue predicted to be a metal ligand in the C(2)HC motif abolished DNA binding. Together, these data show that the DNA binding domain of TAG1 specifically binds to distinct subterminal repeats and contains a zinc finger.  相似文献   

8.
Indole-3-butyric acid (IBA) is an endogenous auxin used to enhance rooting during propagation. To better understand the role of IBA, we isolated Arabidopsis IBA-response (ibr) mutants that display enhanced root elongation on inhibitory IBA concentrations but maintain wild-type responses to indole-3-acetic acid, the principle active auxin. A subset of ibr mutants remains sensitive to the stimulatory effects of IBA on lateral root initiation. These mutants are not sucrose dependent during early seedling development, indicating that peroxisomal beta-oxidation of seed storage fatty acids is occurring. We used positional cloning to determine that one mutant is defective in ACX1 and two are defective in ACX3, two of the six Arabidopsis fatty acyl-CoA oxidase (ACX) genes. Characterization of T-DNA insertion mutants defective in the other ACX genes revealed reduced IBA responses in a third gene, ACX4. Activity assays demonstrated that mutants defective in ACX1, ACX3, or ACX4 have reduced fatty acyl-CoA oxidase activity on specific substrates. Moreover, acx1 acx2 double mutants display enhanced IBA resistance and are sucrose dependent during seedling development, whereas acx1 acx3 and acx1 acx5 double mutants display enhanced IBA resistance but remain sucrose independent. The inability of ACX1, ACX3, and ACX4 to fully compensate for one another in IBA-mediated root elongation inhibition and the ability of ACX2 and ACX5 to contribute to IBA response suggests that IBA-response defects in acx mutants may reflect indirect blocks in peroxisomal metabolism and IBA beta-oxidation, rather than direct enzymatic activity of ACX isozymes on IBA-CoA.  相似文献   

9.
Increasing numbers of cellular pathways are now recognized to be regulated via proteolytic processing events. The rhomboid family of serine proteases plays a pivotal role in a diverse range of pathways, activating and releasing proteins via regulated intramembrane proteolysis. The prototype rhomboid protease, rhomboid-1 in Drosophila, is the key activator of epidermal growth factor (EGF) receptor pathway signalling in the fly and thus affects multiple aspects of development. The role of the rhomboid family in plants is explored and another developmental phenotype, this time in a mutant of an Arabidopsis chloroplast-localized rhomboid, is reported here. It is confirmed by GFP-protein fusion that this protease is located in the envelope of chloroplasts and of chlorophyll-free plastids elsewhere in the plant. Mutant plants lacking this organellar rhomboid demonstrate reduced fertility, as documented previously with KOM-the one other Arabidopsis rhomboid mutant that has been reported in the literature-along with aberrant floral morphology.  相似文献   

10.
The Wiskott-Aldrich syndrome related protein WAVE2 is implicated in the regulation of actin-cytoskeletal reorganization downstream of the small Rho GTPase, Rac. We inactivated the WAVE2 gene by gene-targeted mutation to examine its role in murine development and in actin assembly. WAVE2-deficient embryos survived until approximately embryonic day 12.5 and displayed growth retardation and certain morphological defects, including malformations of the ventricles in the developing brain. WAVE2-deficient embryonic stem cells displayed normal proliferation, whereas WAVE2-deficient embryonic fibroblasts exhibited severe growth defects, as well as defective cell motility in response to PDGF, lamellipodium formation and Rac-mediated actin polymerization. These results imply a non-redundant role for WAVE2 in murine embryogenesis and a critical role for WAVE2 in actin-based processes downstream of Rac that are essential for cell movement.  相似文献   

11.
12.
Nicotianamine aminotransferase (NAAT), the key enzyme involved in the biosynthesis of mugineic acid family phytosiderophores (MAs), catalyzes the amino transfer of nicotianamine (NA). MAs are found only in graminaceous plants, although NA has been detected in every plant so far investigated. Therefore, this amino transfer reaction is the first step in the unique biosynthesis of MAs that has evolved in graminaceous plants. NAAT activity is dramatically induced by Fe deficiency and suppressed by Fe resupply. Based on the protein sequence of NAAT purified from Fe-deficient barley (Hordeum vulgare) roots, two distinct cDNA clones encoding NAAT, naat-A and naat-B, were identified. Their deduced amino acid sequences were homologous to several aminotransferases, and shared consensus sequences for the pyridoxal phosphate-binding site lysine residue and its surrounding residues. The expression of both naat-A and naat-B is increased in Fe-deficient barley roots, while naat-B has a low level of constitutive expression in Fe-sufficient barley roots. No detectable mRNA from either naat-A or naat-B was present in the leaves of either Fe-deficient or Fe-sufficient barley. One genomic clone with a tandem array of naat-B and naat-A in this order was identified. naat-B and naat-A each have six introns at the same locations. The isolation of NAAT genes will pave the way to understanding the mechanism of the response to Fe in graminaceous plants, and may lead to the development of cultivars tolerant to Fe deficiency that can grow in calcareous soils.  相似文献   

13.
Stomatal movements require massive changes in guard cell osmotic content, and both stomatal opening and stomatal closure have been shown to be energy-requiring processes. A possible role for glycolysis in contributing to the energetic, reducing requirements, or signalling processes regulating stomatal movements has not been investigated previously. Glycolysis, oxidization of glucose to pyruvate, is a central metabolic pathway and yields a net gain of 2 ATP and 2 NADH. 2,3-biphosphoglycerate-independent phosphoglycerate mutase (iPGAM) is a key enzymatic activity in glycolysis and catalyses the reversible interconversion of 3-phosphoglycerate to 2-phosphoglycerate. To investigate functions of iPGAMs and glycolysis in stomatal function and plant growth, Arabidopsis insertional mutants in At1g09780 and At3g08590, both of which have been annotated as iPGAMs on the basis of sequence homology, were identified and characterized. While single mutants were indistinguishable from the wild type in all plant phenotypes assayed, double mutants had no detectable iPGAM activity and showed defects in blue light-, abscisic acid-, and low CO(2)-regulated stomatal movements. Vegetative plant growth was severely impaired in the double mutants and pollen was not produced. The data demonstrate that iPGAMs and glycolytic activity are critical for guard cell function and fertility in Arabidopsis.  相似文献   

14.
Iron (Fe) deficiency significantly effects plant growth and development. Plant symptoms under excess zinc (Zn) resemble symptoms of Fe‐deficient plants. To understand cross‐talk between excess Zn and Fe deficiency, we investigated physiological parameters of Arabidopsis plants and applied iTRAQ‐OFFGEL quantitative proteomic approach to examine protein expression changes in microsomal fraction from Arabidopsis shoots under those physiological conditions. Arabidopsis plants manifested shoot inhibition and chlorosis symptoms when grown on Fe‐deficient media compared to basal MGRL solid medium. iTRAQ‐OFFGEL approach identified 909 differentially expressed proteins common to all three biological replicates; the majority were transporters or proteins involved in photosynthesis, and ribosomal proteins. Interestingly, protein expression changes between excess Zn and Fe deficiency showed similar pattern. Further, the changes due to excess Zn were dramatically restored by the addition of Fe. To obtain biological insight into Zn and Fe cross‐talk, we focused on transporters, where STP4 and STP13 sugar transporters were predominantly expressed and responsive to Fe‐deficient conditions. Plants grown on Fe‐deficient conditions showed significantly increased level of sugars. These results suggest that Fe deficiency might lead to the disruption of sugar synthesis and utilization.  相似文献   

15.
Phosphate (Pi) is an essential element for plant development and metabolism. Due to its low availability and mobility in soils, it is often a limiting nutrient for their growth. This phenomenon is reinforced by the formation of insoluble complexes in the environment with many cations, affecting the solubility of both phosphate and associated ions. This interaction is investigated here for iron, a strong phosphate chelator. Depleting the medium in phosphate clearly resulted in an increase of iron content in Arabidopsis. These modifications triggered molecular responses linked with iron status (transport, homeostasis and accumulation). Interestingly, physiological modifications affecting iron storage were also observed. The accumulation of phosphate/iron complexes in the vacuoles of plants grown in Pi-rich medium disappeared in Pi-depleted medium in favor of accumulation of iron inside the chloroplasts, likely associated with ferritin.  相似文献   

16.

Background and aims

Iron (Fe) is an essential micronutrient for all higher organisms. Fe is sparingly available in calcareous soils and Fe deficiency is a major agricultural problem worldwide. Nicotianamine (NA) is a metal chelator involved in metal translocation in plants. Sweet potato is an attractive crop that can grow in poor soil and thus is useful for planting in uncultivated soil. In addition, the sweet potato has recently been suggested as a source of bioethanol. Our aim is to increase NA concentration in sweet potato to ameliorate Fe deficiency.

Method

Sweet potato plants expressing the barley NA synthase 1 (HvNAS1) gene under the control of CaMV 35S promoter were produced by Agrobacterium-mediated transformation.

Results

The transgenic sweet potato exhibited tolerance to low Fe availability when grown in calcareous soil. The level of tolerance to low Fe availability was positively correlated with the HvNAS1 expression level. The NA concentration of the transgenic sweet potato leaves was up to 7.9-fold greater than that of the non-transgenic (NT) plant leaves. Furthermore, the Fe and zinc concentrations were 3- and 2.9-fold greater, respectively, in transgenic sweet potato than in NT plant leaves.

Conclusions

Our results suggest that increasing the NA concentration of sweet potato by overexpression of HvNAS1 could significantly improve agricultural productivity and energy source.
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号